Advertisement

Journal of Electronic Materials

, Volume 47, Issue 8, pp 4296–4302 | Cite as

Emission and Structure-Varying ZnO and Carbon Nanocrystal Composite in Mechanical Processing

  • T. Torchynska
  • B. Perez Millan
  • G. Polupan
  • M. Kakazey
Topical Collection: 18th International Conference on II-VI Compounds
Part of the following topical collections:
  1. 18th International Conference on II-VI Compounds

Abstract

Morphology, photoluminescence (PL), and Raman scattering spectra have been investigated for mixtures of ZnO+0.1%C nanocrystals (NCs) at different stages of mechanical processing (MP). The transformation of graphite into graphene monolayers covering the ZnO NC surface is revealed for the first MP stage. The interaction with oxygen has been detected in the second MP stage which leads to the dissolution of oxygen interstitials in the ZnO NCs and to the formation of graphene (graphite) oxides. Increasing the concentration of the oxygen interstitials in ZnO NCs also enhances the intensity stimulation of the orange PL band (2.18eV). Simultaneously, the PL band peaking at 2.82–2.90 eV is detected in the PL spectra of the ZnO+0.1%C NC mixture after MP for 9–90 min. Then, the variation of the ZnO NC shape, agglomeration of ZnO NCs, modification of ZnO defects and decreasing PL intensity have been detected after prolonged MP for 390 min. It is expected that short stages of MP can be useful for ZnO NC surface covering by graphene layers or graphene (graphite) oxides.

Keywords

ZnO NCs photoluminescence Raman scattering graphene graphene (graphite) oxides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wide Bandgap Semiconductors. Fundamental Properties and Modern Photonic and Electronic Devices, Eds: K. Takahashi, A. Yoshikawa, and A. Sandhu, Springer. 2007, p. 357Google Scholar
  2. 2.
    H. Morkoc and Ü. Özgur, Zinc Oxide: Fundamentals, Materials and Device Technology. Hadis Morkoç and Ümit Özgur (Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2009).CrossRefGoogle Scholar
  3. 3.
    N.H. Alvi, S.M. Usman Ali, S. Hussain, O. Nur, and M. Willander, Scr. Mater. 64, 697 (2011).CrossRefGoogle Scholar
  4. 4.
    M.H. Huang, S. Mao, and H. Feick, Science 292, 1897 (2001).CrossRefGoogle Scholar
  5. 5.
    S. Ghose, A. Sarkar, S. Chattopadhyay, M. Chakrabarti, D. Das, T. Rakshit, S.K. Ray, and D. Jana, J. Appl. Phys. 114, 073516 (2013).CrossRefGoogle Scholar
  6. 6.
    S. Ghose, T. Rakshit, R. Ranganathan, and D. Jana, RSC Adv. 5, 99766 (2015).CrossRefGoogle Scholar
  7. 7.
    Y.D. Zhang, D.S. Yang, N.X. Nghia, T.D. Thanh, and S.C. Yu, Appl. Phys. Lett. 102, 072408 (2013).CrossRefGoogle Scholar
  8. 8.
    T.D. Shen, R.B. Schwarz, and J.D. Thompson, Phys. Rev. B 72, 014431 (2005).CrossRefGoogle Scholar
  9. 9.
    T. Raj, H. Sharma, A. Mayank, A. Singh, T. Aree, N. Kaur, N. Singh, and D.O. Jang, ACS Sustainable Chem. Eng. 2017, 1468 (2017).CrossRefGoogle Scholar
  10. 10.
    I. Hussain, N.B. Singh, A. Singh, and H. Singh, SC Singh - Biotechnology letters 38, 545 (2016).CrossRefGoogle Scholar
  11. 11.
    S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, and N. Muensit, Ceramics International 39, 2811 (2013).CrossRefGoogle Scholar
  12. 12.
    C.A. Aggelopoulos, M. Dimitropoulos, A. Govatsia, L. Sygellou, C.D. Tsakiroglou, and S.N. Yannopoulos, Appl. Catalysis B: Environmental 205, 292 (2017).CrossRefGoogle Scholar
  13. 13.
    S. Ghose, N. Gogurla, R. Ranganathan, and D. Jana, RSC Adv. 6, 83909 (2016).CrossRefGoogle Scholar
  14. 14.
    Z.-W. Wu, S.-L. Tyan, H.-H. Chen, J.-C.-A. Huang, C.-L. Wu, C.-R. Lee, and T.-S. Mo, RSC Adv. 7, 5807 (2017).Google Scholar
  15. 15.
    N.A. Khalisah Aznanand and M.R. Johan, J. Nanomater. ID 439010 (2012).Google Scholar
  16. 16.
    F. Cesano, D. Scarano, S. Bertarione, F. Bonino, A. Damin, S. Bordiga, C. Prestipino, C. Lamberti, and A. Zecchina, J. Photochem. and Photobiol. A: Chemistry 196, 143 (2008).CrossRefGoogle Scholar
  17. 17.
    Z.H. Fan and J.G. Lu, J. Nanosci. Nanotechnol. 5, 1561 (2005).CrossRefGoogle Scholar
  18. 18.
    Z. Chen, N. Zhang, and Y.-J. Xu, Cryst. Eng. Commun. 15, 3022 (2013).CrossRefGoogle Scholar
  19. 19.
    Y. Hu and H.-J. Chen, J. Appl. Phys. 101, 124902 (2007).Google Scholar
  20. 20.
    H.S. Hsu, Y. Tung, Y.J. Chen, M.G. Chen, J.S. Lee, and S.J. Sun, Phys. Status solidi-Rapid Res. Lett. 5, 447 (2011).Google Scholar
  21. 21.
    N. Pan, H. Xue, M. Yu, X. Cui, X. Wang, J.G. Hou, and J. Huang, Nanotechnology 21, 225707 (2010).CrossRefGoogle Scholar
  22. 22.
    G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, and B. Mwakikunga, Solar Energy Materials and Solar Cells 92, 1285 (2008).CrossRefGoogle Scholar
  23. 23.
    G. Williams and P.V. Kamat, Langmuir 25, 13869 (2009).CrossRefGoogle Scholar
  24. 24.
    M. Yu, D. Shao, F. Lu, X. Sun, H. Sun, T. Hu, G. Wang, Sh. Sawyer, H. Qiu, and J. Lian, Electrochem. Commun. 34, 312 (2013)Google Scholar
  25. 25.
    W.J. Li, E.W. Shi, Y.Q. Zheng, and Z.W. Yin, J. Mater. Sci. Lett. 20, 1381 (2001).CrossRefGoogle Scholar
  26. 26.
    B.J. Pawlak, T. Gregorkiewicz, C.A.J. Ammerlaan, W. Takkenberg, and P.F.A. Alkermade, Phys. Rev. B 64, 115308 (2001).CrossRefGoogle Scholar
  27. 27.
    Y. Chen, M.J. Conway, and J.D. Fitzgerald, Appl. Phys. A. Mater. Scien. Process. 76, 633 (2003).Google Scholar
  28. 28.
    T. Tsuzuki and P.G. MaCormick, Scripta Mater. 44, 1731 (2001).CrossRefGoogle Scholar
  29. 29.
    R.Kh. Sendi and S. Mahmud, Appl. Surf. Sci. 258, 8026 (2012).CrossRefGoogle Scholar
  30. 30.
    S. Amirkhanlou, M. Ketabchi, and N. Parvin, Mater. Lett. 86, 122 (2012).CrossRefGoogle Scholar
  31. 31.
    Y.W. Lao, S.T. Kuo, and W.H. Tuan, Ceramics International 35, 1317 (2009).CrossRefGoogle Scholar
  32. 32.
    T. Torchynska, B. Perez Millan, G. Polupan, and M. Kakazey, Mater. Scien. in Semicond. Processing 47, 37 (2016).CrossRefGoogle Scholar
  33. 33.
    A.B. Palotas, L.C. Rainey, C.J. Felderman, and J.B. Vander Sande, Micro. Res. Tech. 33, 266 (1996).Google Scholar
  34. 34.
    E. Velázquez Lozada, T. Torchynska, J.L. Casas Espinola, A. Vivas Hernandez, M. Kakazey, M. Vlasova, L. Shcherbyna, and L. Castañeda, Mater. Scien. Semicond. Process. 37, 82 (2015).Google Scholar
  35. 35.
    T.V. Torchynska and A.I. Diaz Cano, M. Morales Rodriguez, L. Yu Khomenkova, Phys. B: Condens.Matter 340, 1113 (2003).CrossRefGoogle Scholar
  36. 36.
    A.I. Diaz Cano, B. El Falali, and T.V. Torchynska, J.L. Casas Espinola, J. Phys. Chem. Solids 74, 431 (2013).CrossRefGoogle Scholar
  37. 37.
    J.F. Scott, Phys. Rev. B 2, 1209 (1970).CrossRefGoogle Scholar
  38. 38.
    J.M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977).CrossRefGoogle Scholar
  39. 39.
    T.V. Torchynska and B. El Filali, J. Lumines. 149, 54 (2014).CrossRefGoogle Scholar
  40. 40.
    T.C. Damen, S.P.S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).CrossRefGoogle Scholar
  41. 41.
    R. Cusco, E. Alarcon-Llado, J. Ibanez, L. Artus, J. Jimenez, B. Wang, and M.J. Callahan, Phys. Rev. B 75, 165202 (2007).CrossRefGoogle Scholar
  42. 42.
    K.A. Alim, V.A. Fonoberov, M. Shamsa, and A.A. Balandina, J. Appl. Phys. 97, 124313 (2005).CrossRefGoogle Scholar
  43. 43.
    R. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
  44. 44.
    P.K. Sarswat and M.L. Free, J. Materials Science 50, 1613 (2015).CrossRefGoogle Scholar
  45. 45.
    A.B. Djurišic, A.M.C. Ng, and X.Y. Chen, Progress in Quantum Electronics 34, 191 (2010).CrossRefGoogle Scholar
  46. 46.
    A.I. Diaz Cano, B. El Filali, and T.V. Torchynska, J.L. Casas Espinola. Physica E 51, 24 (2013).CrossRefGoogle Scholar
  47. 47.
    E. Velázquez Lozada, T.V. Torchynska, J.L. Casas Espinola, B. Perez Millan, Phys. B, 453, 111 (2014),Google Scholar
  48. 48.
    L.S. Vlasenko and G.D. Watkins, Phys. Rev. B 71, 125210 (2005).CrossRefGoogle Scholar
  49. 49.
    M.A. Reshchikov, H. Morkoc, B. Nemeth, J. Nause, J. Xie, B. Hertog, and A. Osinsky, Physica B. Condensed Matter 401–402, 358 (2007).CrossRefGoogle Scholar
  50. 50.
    J. Qiu, X. Li, W. He, S.-J. Park, H.-K. Kim, Y.-H. Hwang, J.-H. Lee, and Y.-D. Kim, Nanotechnology 20, 155603 (2009).CrossRefGoogle Scholar
  51. 51.
    A. Janotti and C.G Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).CrossRefGoogle Scholar
  52. 52.
    T.V. Torchynska, B. El Filali, and I.C. Ballardo Rodríguez, Phys. E 75, 156 (2016).CrossRefGoogle Scholar
  53. 53.
    C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, and H.-A. Chen etc, Angew. Chem. Int. Ed. 51, 6662 (2012).CrossRefGoogle Scholar
  54. 54.
    F. Liu, Y. Cao, M. Yi, L. Xie, W. Huang, N. Tang, W. Zhong, and D. Youwei, Crystals 3, 28 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Instituto Politécnico Nacional, ESFMMéxico CityMexico
  2. 2.Instituto Politécnico Nacional, UPIITAMéxico CityMexico
  3. 3.Instituto Politécnico Nacional, ESIMEMéxico CityMexico
  4. 4.CIICAp - Universidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations