Energy Levels of Defects Created in Silicon Supersaturated with Transition Metals

  • H. García
  • H. Castán
  • S. Dueñas
  • E. García-Hemme
  • R. García-Hernansaz
  • D. Montero
  • G. González-Díaz
Topical Collection: 17th Conference on Defects (DRIP XVII)
  • 7 Downloads
Part of the following topical collections:
  1. 17th Conference on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP XVII)

Abstract

Intermediate-band semiconductors have attracted much attention for use in silicon-based solar cells and infrared detectors. In this work, n-Si substrates have been implanted with very high doses (1013 cm−2 and 1014 cm−2) of vanadium, which gives rise to a supersaturated layer inside the semiconductor. However, the Mott limit was not exceeded. The energy levels created in the supersaturated silicon were studied in detail by means of thermal admittance spectroscopy. We found a single deep center at energy near EC − 200 meV. This value agrees with one of the levels found for vanadium in silicon. The capture cross-section values of the deep levels were also calculated, and we found a relationship between the capture cross-section and the energy position of the deep levels which follows the Meyer–Neldel rule. This process usually appears in processes involving multiple excitations. The Meyer–Neldel energy values agree with those previously obtained for silicon supersaturated with titanium and for silicon contaminated with iron.

Keywords

Supersaturated silicon Meyer–Neldel rule intermediate band thermal admittance spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid for the ion implantation process and metallic evaporations. This work has been supported by the Spanish MINECO TEC 2014 under Grant 52512-C3-3-R, by the Project MADRID-PV (Grant No. 2013/MAE-2780) funded by the Comunidad de Madrid, by the Spanish MINECO TEC2013 under Grant 41730-R, and TEC2017 under Grant 84378-R, and by the Universidad Complutense de Madrid (Programa de Financiación de Grupos de Investigación UCM-Banco Santander) under Grant 910173-2014D.

References

  1. 1.
    A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997).CrossRefGoogle Scholar
  2. 2.
    W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).CrossRefGoogle Scholar
  3. 3.
    E. López, A. Datas, I. Ramiro, P.G. Linares, E. Antolín, I. Artacho, A. Martí, A. Luque, Y. Shoji, T. Sogabe, A. Ogura, and Y. Okada, Sol. Energy Mater. Sol. Cells 149, 15 (2016).CrossRefGoogle Scholar
  4. 4.
    J.P. Mailoa, A.J. Akey, C.B. Simmons, D. Hutchinson, J. Mathews, J.T. Sullivan, D. Recht, M.T. Winkler, J.S. Williams, J.M. Warrender, P.D. Persans, M.J. Aziz, and T. Buonassisi, Nat. Commun. 5, 3011 (2014).CrossRefGoogle Scholar
  5. 5.
    E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, Appl. Phys. Lett. 104, 211105 (2014).CrossRefGoogle Scholar
  6. 6.
    H. Boustanji, S. Jaziri, and J.-L. Lazari, Sol. Energy Mater. Sol. Cells 159, 633 (2017).CrossRefGoogle Scholar
  7. 7.
    N. Tang, Q. Hu, A. Ren, W. Li, C. Liu, J. Zhang, L. Wu, B. Li, G. Zeng, and S. Hu, Sol. Energy 157, 707 (2017).CrossRefGoogle Scholar
  8. 8.
    D. Recht, M.J. Smith, S. Charnvanichborikarn, J.T. Sullivan, M.T. Winkler, J. Mathews, J.M. Warrender, T. Buonassisi, J.S. Williams, S. Gradečak, and M.J. Aziz, J. Appl. Phys. 114, 124903 (2013).CrossRefGoogle Scholar
  9. 9.
    A. Luque, A. Martí, E. Antolín, and C. Tablero, Physica B 382, 320 (2006).CrossRefGoogle Scholar
  10. 10.
    H. Castán, E. Pérez, H. García, S. Dueñas, L. Bailón, J. Olea, D. Pastor, E. García-Hemme, M. Irigoyen, and G. González-Díaz, J. Appl. Phys. 113, 024104 (2013).CrossRefGoogle Scholar
  11. 11.
    J. Olea, M. Toledano-Luque, D. Pastor, E. San Andrés, I. Mártil, and G. González-Díaz, J. Appl. Phys. 107, 103524 (2010).CrossRefGoogle Scholar
  12. 12.
    J.-W. Chen, A.G. Milnes, and A. Rohatgi, Solid State Electron. 22, 801 (1979).CrossRefGoogle Scholar
  13. 13.
    J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, and I. Mártil, J. Appl. Phys. 104, 016105 (2008).CrossRefGoogle Scholar
  14. 14.
    J. Barbolla, S. Dueñas, and L. Bailón, Solid State Electron. 35, 285 (1992).CrossRefGoogle Scholar
  15. 15.
    D.K. Schroeder, Semiconductor material and device characterization, 2nd ed. (New York: Wiley, 1998).Google Scholar
  16. 16.
    D. Pastor, J. Olea, A. del Prado, E. García-Hemme, R. García-Hernansanz, and G. González-Díaz, Sol. Energy Mater. Sol. Cells 104, 159 (2012).CrossRefGoogle Scholar
  17. 17.
    C.W. White, S.R. Wilson, B.R. Appleton, and F.W. Young, J. Appl. Phys. 51, 738 (1980).CrossRefGoogle Scholar
  18. 18.
    T. Sadoh, H. Nakashima, and T. Surushima, J. Appl. Phys. 72, 520 (1992).CrossRefGoogle Scholar
  19. 19.
    E. Pérez, S. Dueñas, H. Castán, H. García, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, J. Appl. Phys. 118, 245704 (2015).CrossRefGoogle Scholar
  20. 20.
    E. García-Hemme, G. García, P. Palacios, D. Montero, R. García-Hernansanz, G. González-Díaz, and P. Wanhon, J. Phys. D Appl. Phys. 50, 495101 (2017).CrossRefGoogle Scholar
  21. 21.
    W. Meyer and H. Neldel, Z. Tech. Phys. 18, 518 (1937).Google Scholar
  22. 22.
    Y.F. Chen and S.F. Huang, Phys. Rev. B 44, 13775 (1991).CrossRefGoogle Scholar
  23. 23.
    E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, and G. González-Díaz, Appl. Phys. Lett. 106, 022105 (2015).CrossRefGoogle Scholar
  24. 24.
    E. Pérez, H. García, H. Castán, and S. Dueñas, Semicond. Sci. Technol. 30, 035011 (2015).CrossRefGoogle Scholar
  25. 25.
    E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, and G. González-Díaz, J. Phys. D Appl. Phys. 48, 075102 (2015).CrossRefGoogle Scholar
  26. 26.
    T. Coutts and N. Pearsall, Appl. Phys. Lett. 44, 134 (1984).CrossRefGoogle Scholar
  27. 27.
    A. Yelon, B. Movoghar, and R.S. Crandall, Rep. Prog. Phys. 69, 1145 (2006).CrossRefGoogle Scholar
  28. 28.
    A. Yelon, B. Movoghar, and H.M. Branz, Phys. Rev. B 46, 12244 (1992).CrossRefGoogle Scholar
  29. 29.
    D.V. Lang and C.H. Henry, Phys. Rev. Lett. 35, 1525 (1975).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Dpto. Electricidad y Electrónica, E.T.S.I. TelecomunicaciónUniversidad de ValladolidValladolidSpain
  2. 2.Dpto. Física Aplicada III (Electricidad y Electrónica), Facultad de Ciencias FísicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations