Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3692–3700 | Cite as

Ab-initio Study of the Electron Mobility in a Functionalized UiO-66 Metal Organic Framework

  • Terence D. Musho
  • Alhassan S. Yasin
Article

Abstract

This study leverages density functional theory accompanied with Boltzmann transport equation approaches to investigate the electronic mobility as a function of inorganic substitution and functionalization in a thermally stable UiO-66 metal-organic framework (MOF). The MOFs investigated are based on Zr-UiO-66 MOF with three functionalization groups of benzene dicarboxylate (BDC), BDC functionalized with an amino group (\(\hbox {BDC} + \hbox {NH}_2\)) and a nitro group (\(\hbox {BDC} + \hbox {NO}_2\)). The design space of this study is bound by UiO-66(M)-R, [\(\hbox {M}=\hbox {Zr}\), Ti, Hf; \(\hbox {R}=\hbox {BDC}\), \(\hbox {BDC}+\hbox {NO}_2\), \(\hbox {BDC}+\hbox {NH}_2\)]. The elastic modulus was not found to vary significantly over the structural modification of the design space for either functionalization or inorganic substitution. However, the electron–phonon scattering potential was found to be controllable by up to 30% through controlled inorganic substitution in the metal clusters of the MOF structure. The highest electron mobility was predicted for a UiO-66(\(\hbox {Hf}_5\hbox {Zr}_1\)) achieving a value of approximately \(1.4\times 10^{-3}\,\hbox {cm}^2\)/V s. It was determined that functionalization provides a controlled method of modulating the charge density, while inorganic substitution provides a controlled method of modulating the electronic mobility. Within the proposed design space the electrical conductivity was able to be increased by approximately three times the base conductivity through a combination of inorganic substitution and functionalization.

Keywords

DFT MOF electronic mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.M. Yang, E. Ganz, S. Svelle, and M. Tilset, J. Mater. Chem. C 2, 7111 (2014).CrossRefGoogle Scholar
  2. 2.
    L. Shen, R. Liang, M. Luo, F. Jing, and L. Wu, Phys. Chem. Chem. Phys. 17, 117 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. Lee, S. Kim, J.K. Kang, and S.M. Cohen, Chem. Commun. 51, 5735 (2015).CrossRefGoogle Scholar
  4. 4.
    P. Canepa, N. Nijem, Y.J. Chabal, and T. Thonhauser, Phys. Rev. Lett. 110, 026102 (2013).CrossRefGoogle Scholar
  5. 5.
    K. Tan, P. Canepa, Q. Gong, J. Liu, D.H. Johnson, A. Dyevoich, P.K. Thallapally, T. Thonhauser, J. Li, and Y.J. Chabal, Chem. Mater. 25(23), 4653 (2013).CrossRefGoogle Scholar
  6. 6.
    S. Wang and X. Wang, Small 11(26), 3097 (2015).CrossRefGoogle Scholar
  7. 7.
    T. Musho and N. Wu, Phys. Chem. Chem. Phys. 17, 26160 (2015).CrossRefGoogle Scholar
  8. 8.
    L. Hailian, E. Mohamed, M. O’Keeffe, and O.M. Yaghi, Nature 402(6759), 279 (1999).CrossRefGoogle Scholar
  9. 9.
    A.S. Yasin, J. Li, N. Wu, and T. Musho, Phys. Chem. Chem. Phys. 18(18), 12748 (2016).CrossRefGoogle Scholar
  10. 10.
    L. Sun, C.H. Hendon, M.A. Minier, A. Walsh, and M. Dinc, J. Am. Chem. Soc. 137(19), 6164 (2015).CrossRefGoogle Scholar
  11. 11.
    T.C. Narayan, T. Miyakai, S. Seki, and M. Dinca, J. Am. Chem. Soc. 134(31), 12932 (2012).CrossRefGoogle Scholar
  12. 12.
    A. Saeki, Y. Koizumi, T. Aida, and S. Seki, Acc. Chem. Res. 45(8), 1193 (2012).CrossRefGoogle Scholar
  13. 13.
    J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang, and X. Wang, Chem. Commun. 48, 11656 (2012).CrossRefGoogle Scholar
  14. 14.
    T. Musho, J. Li, and N. Wu, Phys. Chem. Chem. Phys. 16, 23646 (2014).  https://doi.org/10.1039/C4CP03110E CrossRefGoogle Scholar
  15. 15.
    Y. Kobayashi, B. Jacobs, M.D. Allendorf, and J.R. Long, Chem. Mater. 22(14), 4120 (2010).CrossRefGoogle Scholar
  16. 16.
    M.H. Zeng, Q.X. Wang, Y.X. Tan, S. Hu, H.X. Zhao, L.S. Long, and M. Kurmoo, J. Am. Chem. Soc. 132(8), 2561 (2010).CrossRefGoogle Scholar
  17. 17.
    H. Motegi, K. Yano, N. Setoyama, Y. Matsuoka, T. Ohmura, and A. Usuki, J. Porous Mater. 24(5), 1327 (2017).CrossRefGoogle Scholar
  18. 18.
    C. Caratelli, J. Hajek, F.G. Cirujano, M. Waroquier, F.X.L. i Xamena, and V. Van Speybroeck. J. Catal. 352, 401 (2017)CrossRefGoogle Scholar
  19. 19.
    S.T. Gao, W. Liu, C. Feng, N.Z. Shang, and C. Wang, Catal. Sci. Technol. 6(3), 869 (2016).CrossRefGoogle Scholar
  20. 20.
    D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, and Z. Li, Chem. A Eur. J. 19(42), 14279 (2013).CrossRefGoogle Scholar
  21. 21.
    F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, et al., J. Am. Chem. Soc. 135(31), 11465 (2013).CrossRefGoogle Scholar
  22. 22.
    G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, and K.P. Lillerud, Chem. Mater. 28(11), 3749 (2016).CrossRefGoogle Scholar
  23. 23.
    C.H. Hendon, D. Tiana, M. Fontecave, C. Sanchez, L. Darras, C. Sassoye, L. Rozes, C. Mellot-Draznieks, and A. Walsh, J. Am. Chem. Soc. 135(30), 10942 (2013).CrossRefGoogle Scholar
  24. 24.
    N.J. Tao, Nat Nano 1(3), 173 (2006).CrossRefGoogle Scholar
  25. 25.
    S.S. Park, E.R. Hontz, L. Sun, C.H. Hendon, A. Walsh, T. Van Voorhis, and M. Dinc, J. Am. Chem. Soc. 137(5), 1774 (2015).CrossRefGoogle Scholar
  26. 26.
    C.K. Lin, D. Zhao, W.Y. Gao, Z. Yang, J. Ye, T. Xu, Q. Ge, S. Ma, and D.J. Liu, Inorg. Chem. 51(16), 9039 (2012).CrossRefGoogle Scholar
  27. 27.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Matter 21(39), 395502 (2009).CrossRefGoogle Scholar
  28. 28.
    S. Grimme, J. Comput. Chem. 27(15), 1787 (2006).  https://doi.org/10.1002/jcc.20495 CrossRefGoogle Scholar
  29. 29.
    V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, and A. Vittadini, J. Comput. Chem. 30(6), 934 (2009).  https://doi.org/10.1002/jcc.21112 CrossRefGoogle Scholar
  30. 30.
    J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).  https://doi.org/10.1103/PhysRev.80.72 CrossRefGoogle Scholar
  31. 31.
    S. Devautour-Vinot, G. Maurin, C. Serre, P. Horcajada, D. Paula da Cunha, V. Guillerm, E. de Souza Costa, F. Taulelle, and C. Martineau, Chem. Mater. 24(11), 2168 (2012).CrossRefGoogle Scholar
  32. 32.
    R. Warmbier, A. Quandt, and G. Seifert, J. Phys. Chem. C 118(22), 11799 (2014).CrossRefGoogle Scholar
  33. 33.
    A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila, P. Haney, R.A. Kinney, V. Szalai, F. El Gabaly, H.P. Yoon, et al., Science 343(6166), 66 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringWest Virginia UniversityMorgantownUSA

Personalised recommendations