Effect of Annealing Temperature on Structural and Optical Properties of Sol–Gel-Derived ZnO Thin Films

  • Mohd. Arif
  • Amit Sanger
  • Paula M. Vilarinho
  • Arun Singh
Article
  • 1 Downloads

Abstract

Nanocrystalline ZnO thin films were deposited on glass substrate via sol–gel dip-coating technique then annealed at 300°C, 400°C, and 500°C for 1 h. Their optical, structural, and morphological properties were studied using ultraviolet–visible (UV–Vis) spectrophotometry, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). XRD diffraction revealed that the crystalline nature of the thin films increased with increasing annealing temperature. The c-axis orientation improved, and the grain size increased, as indicated by increased intensity of the (002) plane peak at 2θ = 34.42° corresponding to hexagonal ZnO crystal. The average crystallite size of the thin films ranged from 13 nm to 23 nm. Increasing the annealing temperature resulted in larger crystallite size and higher crystallinity with increased surface roughness. The grain size according to SEM analysis was in good agreement with the x-ray diffraction data. The optical bandgap of the thin films narrowed with increasing annealing temperature, lying in the range of 3.14 eV to 3.02 eV. The transmission of the thin films was as high as 94% within the visible region. The thickness of the thin films was 400 nm, as measured by ellipsometry, after annealing at the different temperatures of 300°C, 400°C, and 500°C.

Keywords

ZnO thin film XRD UV–Vis spectroscopy SEM sol–gel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Jain, A. Sanger, S. Chauhan, and R. Chandra, Mater. Res. Express 1, 035046 (2014).CrossRefGoogle Scholar
  2. 2.
    A. Sanger, A. Kumar, A. Kumar, J. Jaiswal, and R. Chandra, Sens. Actuat. B Chem. 236, 16 (2016).CrossRefGoogle Scholar
  3. 3.
    A. Sanger, P.K. Jain, Y.K. Mishra, and R. Chandra, Sens. Actuat. B Chem. 242, 694 (2017).CrossRefGoogle Scholar
  4. 4.
    A. Sanger, A. Kumar, A. Kumar, P.K. Jain, Y.K. Mishra, and R. Chandra, Ind. Eng. Chem. Res. 55, 9452 (2016).CrossRefGoogle Scholar
  5. 5.
    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).CrossRefGoogle Scholar
  6. 6.
    T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, and T. Mise, Sol. Energy 77, 739 (2004).CrossRefGoogle Scholar
  7. 7.
    S.Y. Lee, E.S. Shim, H.S. Kang, S.S. Pang, and J.S. Kang, Thin Solid Films 31, 437 (2005).Google Scholar
  8. 8.
    R. Könenkamp, R.C. Word, and C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004).CrossRefGoogle Scholar
  9. 9.
    S.T. McKinstry and P. Muralt, Electroceram. J. 7, 12 (2004).Google Scholar
  10. 10.
    Z.L. Wang, X.Y. Kong, Y. Ding, P. Gao, W.L. Hughes, R. Yang, and Y. Zhang, Adv. Funct. Mater. 14, 943 (2004).CrossRefGoogle Scholar
  11. 11.
    M.S. Wagh, L.A. Patil, T. Seth, and D.P. Amalnerkar, Mater. Chem. Phys. 84, 228 (2004).CrossRefGoogle Scholar
  12. 12.
    Y. Ushio, M. Miyayama, and H. Yanagida, Sens. Actuat. B 17, 221 (1994).CrossRefGoogle Scholar
  13. 13.
    H. Harima, J. Phys. Condens. Matter 16, S5653 (2004).CrossRefGoogle Scholar
  14. 14.
    S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, and T. Steiner, Semicond. Sci. Technol. 19, R59 (2004).CrossRefGoogle Scholar
  15. 15.
    J. Zhang, L.D. Sun, J. Yin, H. Su, C.S. Liao, and C. Yan, Chem. Mater. 14, 4172 (2002).CrossRefGoogle Scholar
  16. 16.
    J. Lee, A.J. Easteal, U. Pal, and D. Bhattacharyya, Curr. Appl. Phys. 9, 792 (2009).CrossRefGoogle Scholar
  17. 17.
    S.B. Park, Y.C. Kang, and J. Aerosol, Science 28, S473 (1997).Google Scholar
  18. 18.
    C.C. Chen, P. Liu, and C.H. Lu, Chem. Eng. J. 144, 509 (2008).CrossRefGoogle Scholar
  19. 19.
    P. Nunes, D. Costa, E. Fortunato, and R. Fortunato, Vacuum 64, 293 (2002).CrossRefGoogle Scholar
  20. 20.
    M. Krunks and E. Mellikov, Thin Solid Films 270, 33 (1995).CrossRefGoogle Scholar
  21. 21.
    K. Tominaga, T. Takao, A. Fukushima, T. Moriga, and I. Nakabayashi, Vacuum 66, 505 (2002).CrossRefGoogle Scholar
  22. 22.
    D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, and G. Gantwell, Appl. Phys. Lett. 81, 1830 (2002).CrossRefGoogle Scholar
  23. 23.
    N. Naghavi, C. Marcel, L. Dupont, A. Rougier, J.B. Leriche, and C. Guery, J. Mater. Chem. 10, 2315 (2000).CrossRefGoogle Scholar
  24. 24.
  25. 25.
    A.L. Mercado, C.E. Allmond, J.G. Hoekstra, and J.M. Fitz-Gerald, Appl. Phys. A 81, 591 (2005).CrossRefGoogle Scholar
  26. 26.
    R. Jones and D. Fried, in 4610, Proc. SPIE, 187, San Jose, Calif, USA, (2002).Google Scholar
  27. 27.
    V. Gupta and A. Mansingh, J. Appl. Phys. 80, 1063 (1996).CrossRefGoogle Scholar
  28. 28.
    G. Kenanakis, Z. Giannakoudakis, D. Vernardou, C. Savvakis, and N. Katsarakis, Catal. Today 151, 34 (2010).CrossRefGoogle Scholar
  29. 29.
    L.Y. Zhang, L.W. Yin, C.X. Wang, N. Lun, and Y.X. Qi, ACS Appl. Mater. Interfaces 2, 1769 (2010).CrossRefGoogle Scholar
  30. 30.
    S. Sanjeev and D. Kekuda, IOP Conf. Ser. Mater. Sci. Eng. 73, 012149 (2015).CrossRefGoogle Scholar
  31. 31.
    M. Caglar, Y. Caglar, and S. Ilican, J. Optoelectron. Adv. Mater. 8, 1410 (2006).Google Scholar
  32. 32.
    R.K. Shukla, A. Srivastava, A. Srivastava, and K.C. Dubey, J. Cryst. Growth 294, 427 (2006).CrossRefGoogle Scholar
  33. 33.
    F.E. Ghodsi and H. Absalan, Acta Phys. Pol. A 118, 659 (2010).CrossRefGoogle Scholar
  34. 34.
    J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, X. Song, and Z. Sun, Superlattice. Microst. 50, 98 (2011)Google Scholar
  35. 35.
    K. Jindal, M. Tomar, R.S. Katiyar, and V. Gupta, J. Appl. Phys. 111, 102805 (2012).CrossRefGoogle Scholar
  36. 36.
    N. Bouchenak, N.E. Khelladi, and C. Sari, Adv. Mater. Sci. 13, 35 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Mohd. Arif
    • 1
  • Amit Sanger
    • 2
  • Paula M. Vilarinho
    • 3
  • Arun Singh
    • 1
  1. 1.Advanced Electronic and Nanomaterials Laboratory, Department of PhysicsJamia Millia Islamia, Central UniversityNew DelhiIndia
  2. 2.School of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanSouth Korea
  3. 3.Department of Materials and Ceramic EngineeringUniversity of AveiroAveiroPortugal

Personalised recommendations