Journal of Electronic Materials

, Volume 47, Issue 7, pp 3560–3567 | Cite as

Microwave-Assisted Size Control of Colloidal Nickel Nanocrystals for Colloidal Nanocrystals-Based Non-volatile Memory Devices

  • Manoj Yadav
  • Ravi Shankar R. Velampati
  • D. Mandal
  • Rohit Sharma


Colloidal synthesis and size control of nickel (Ni) nanocrystals (NCs) below 10 nm are reported using a microwave synthesis method. The synthesised colloidal NCs have been characterized using x-ray diffraction, transmission electron microscopy (TEM) and dynamic light scattering (DLS). XRD analysis highlights the face centred cubic crystal structure of synthesised NCs. The size of NCs observed using TEM and DLS have a distribution between 2.6 nm and 10 nm. Furthermore, atomic force microscopy analysis of spin-coated NCs over a silicon dioxide surface has been carried out to identify an optimum spin condition that can be used for the fabrication of a metal oxide semiconductor (MOS) non-volatile memory (NVM) capacitor. Subsequently, the fabrication of a MOS NVM capacitor is reported to demonstrate the potential application of colloidal synthesized Ni NCs in NVM devices. We also report the capacitance–voltage (C–V) and capacitance–time (C–t) response of the fabricated MOS NVM capacitor. The C–V and C–t characteristics depict a large flat band voltage shift (VFB) and high retention time, respectively, which indicate that colloidal Ni NCs are excellent candidates for applications in next-generation NVM devices.


Nanocrystals (NCs)-based non-volatile memory (NVM) XRD TEM DLS spin-coating AFM fabrication and characterization flat band voltage shift (VFB


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the financial support received from the Ministry of Electronics and Information Technology, Government of India, and the Indian Institute of Technology Ropar. The authors would like to thank the Indian Institute of Science, Bangalore, for their support in carrying out device fabrication and providing access to the HRTEM facility.


  1. 1.
    S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996).CrossRefGoogle Scholar
  2. 2.
    J.S. Meena, S.M. Sze, U. Chand, and T.Y. Tseng, Nanoscale Res. Lett. 9, 526 (2014).CrossRefGoogle Scholar
  3. 3.
    J. Zhou, H. Ji, T. Lan, J. Yan, W. Zhou, and X. Miao, J. Electron. Mater. 44, 1 (2015).CrossRefGoogle Scholar
  4. 4.
    C. Ge, C. Wang, K.J. Jin, H.B. Lu, and G.Z. Yang, Nano Micro Lett. 5, 2 (2013).CrossRefGoogle Scholar
  5. 5.
    K.H. Chen, C.M. Cheng, M.C. Kao, K.C. Chang, T.C. Chang, T.M. Tsai, S. Wu, and F.Y. Su, J. Electron. Mater. 46, 4 (2017).Google Scholar
  6. 6.
    S.F. Wang, C.C. Hsu, J.P. Chu, Y.X. Liu, and L.W. Chen, J. Electron. Mater. 46, 3 (2017).Google Scholar
  7. 7.
    L. Thomas, G. Jan, J. Zhu, H. Liu, Y.J. Lee, S. Le, R.Y. Tong, K. Pi, Y.J. Wang, D. Shen, R. He, J. Haq, J. Teng, V. Lam, K. Huang, T. Zhong, T. Torng, and P.K. Wang, J. Appl. Phys. 115, 172615 (2014).CrossRefGoogle Scholar
  8. 8.
    T.C. Chang, F.Y. Jian, S.C. Chen, and Y.T. Tsai, Mater. Today 14, 12 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Wang, X. Zou, X. Xiao, L. Xu, C. Wang, C. Jiang, J.C. Ho, T. Wang, J. Li, and L. Liao, Small 11, 2 (2015).CrossRefGoogle Scholar
  10. 10.
    C. Lee, J. Meteer, V. Narayanan, and E.C. Kan, J. Electron. Mater. 34, 1 (2005).CrossRefGoogle Scholar
  11. 11.
    J. Kondo, M. Lingalugari, P.Y. Chan, E. Heller, and F. Jain, J. Electron. Mater. 44, 9 (2015).CrossRefGoogle Scholar
  12. 12.
    International Technology Roadmap for Semiconductors (ITRS) (2015).Google Scholar
  13. 13.
    X. Wang, W. Xie, and J.B. Xu, Adv. Mater. 26, 31 (2014).Google Scholar
  14. 14.
    R.S.R. Velampati, E.S. Hasaneen, E.K. Heller, and F.C. Jain, IEEE Trans. Very Large Scale Integr. Syst. 25, 5 (2017).CrossRefGoogle Scholar
  15. 15.
    G. Zhou, B. Wu, Z. Li, Z. Xiao, S. Li, and P. Li, Curr. Appl. Phys. 15, 3 (2015).Google Scholar
  16. 16.
    W.L. Liu, P.F. Lee, J.Y. Dai, J. Wang, H.L.W. Chan, C.L. Choy, Z.T. Song, and S.L. Feng, Appl. Phys. Lett. 86, 013110 (2005).CrossRefGoogle Scholar
  17. 17.
    S. Duguay, J.J. Grob, A. Slaoui, Y.L. Gall, and M.A. Liess, J. Appl. Phys. 97, 104330 (2005).CrossRefGoogle Scholar
  18. 18.
    S.J. Ding, H.B. Chen, X.M. Cui, S. Chen, Q.Q. Sun, P. Zhou, H.L. Lu, D.W. Zhang, and C. Shen, Nanoscale Res. Lett. 8, 80 (2013).CrossRefGoogle Scholar
  19. 19.
    J. Kim, D. Son, M. Lee, C. Song, J.K. Song, J.H. Koo, D.J. Lee, H.J. Shim, J.H. Kim, M. Lee, T. Hyeon, and D.H. Kim, Sci. Adv. 2, 1 (2016).Google Scholar
  20. 20.
    D. Biswas, S. Mondal, A. Rakshit, A. Bose, S. Bhattacharyya, and S. Chakraborty, Mater. Sci. Semicond. Proc. 63, 1 (2017).CrossRefGoogle Scholar
  21. 21.
    M. Baghbanzadeh, L. Carbone, P.D. Cozzoli, and C.O. Kappe, Angew. Chem. Int. Ed. 50, 48 (2011).CrossRefGoogle Scholar
  22. 22.
    S. Faraji and F.N. Ani, J. Power Sources 263, 338 (2014).CrossRefGoogle Scholar
  23. 23.
    A.K. Mondal, D. Su, S. Chen, K. Kretschmer, X. Xie, H.J. Ahn, and G. Wang, ChemPhysChem 16, 1 (2015).CrossRefGoogle Scholar
  24. 24.
    G. Tian, N. Jia, S. Qi, and D. Wu, J. Electron. Mater. 44, 10 (2015).Google Scholar
  25. 25.
    E.K. Kim, J.H. Kim, H.K. Noh, and Y.H. Kim, J. Electron. Mater. 35, 4 (2006).Google Scholar
  26. 26.
    C. Tan, Z. Liu, W. Huang, and H. Zhang, Chem. Soc. Rev. 44, 2615 (2015).CrossRefGoogle Scholar
  27. 27.
    M. Eslamian, Nano Micro Lett. 9, 3 (2017).CrossRefGoogle Scholar
  28. 28.
    M. Yadav, R.S.R. Velampati, D. Mandal, and R. Sharma, Proceedings of the 13th IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC 2017), Hsinchu (2017).Google Scholar
  29. 29.
    D. Li and S. Komarneni, J. Am. Ceram. Soc. 89, 5 (2006).Google Scholar
  30. 30.
    M. Kaszuba, D. Mcknight, M.T. Connah, F.K.M. Watson, and U. Nobbmann, J. Nanopart. Res. 10, 5 (2008).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology RoparRupnagarIndia
  2. 2.Semi-Conductor LaboratoryDepartment of Space, Government of IndiaMohaliIndia
  3. 3.Department of ChemistryIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations