Journal of Electronic Materials

, Volume 47, Issue 7, pp 3552–3559 | Cite as

Effect of Post-annealing on the Electrochromic Properties of Layer-by-Layer Arrangement FTO-WO3-Ag-WO3-Ag

  • S. Hoseinzadeh
  • R. Ghasemiasl
  • A. Bahari
  • A. H. Ramezani


In the current study, composites of tungsten trioxide (W03) and silver (Ag) are deposited in a layer-by-layer electrochromic (EC) arrangement onto a fluorine-doped tin oxide coated glass substrate. Tungsten oxide nanoparticles are an n-type semiconductor that can be used as EC cathode material. Nano-sized silver is a metal that can serve as an electron trap center that facilitates charge departure. In this method, the WO3 and Ag nanoparticle powder were deposited by physical vapor deposition onto the glass substrate. The fabricated electrochromic devices (ECD) were post-annealed to examine the effect of temperature on their EC properties. The morphology of the thin film was characterized by scanning electron microscopy and atomic force microscopy. Structural analysis showed that the addition of silver dopant increased the size of the aggregation of the film. The film had an average approximate roughness of about 17.8 nm. The electro-optical properties of the thin film were investigated using cyclic voltammetry and UV–visible spectroscopy to compare the effects of different post-annealing temperatures. The ECD showed that annealing at 200°C provided better conductivity (maximum current of about 90 mA in the oxidation state) and change of transmittance (ΔT = 90% at the continuous switching step) than did the other thin films. The optical band gaps of the thin film showed that it allowed direct transition at 3.85 eV. The EC properties of these combinations of coloration efficiency and response time indicate that the WO3-Ag-WO3-Ag arrangement is a promising candidate for use in such ECDs.


Nanocomposite electrochromic device tungsten oxide silver thin film 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Yang, P. Sun, and W. Mai, Mater. Today 19, 394 (2016).CrossRefGoogle Scholar
  2. 2.
    S. Hoseinzadeh, A. Bahari, R. Ghasemiasl, and A.H. Ramezani, J. Mater. Sci. Mater. Electron. 28, 14855 (2017).CrossRefGoogle Scholar
  3. 3.
    S. Hoseinzadeh, A. Bahari, R. Ghasemiasl, and A.H. Ramezani, J. Mater. Sci. Mater. Electron. 28, 14446 (2017).CrossRefGoogle Scholar
  4. 4.
    H. Najafi-Ashtiani, A. Bahari, S. Gholipour, and S. Hoseinzadeh, Appl. Phys. A 124, 24 (2018).CrossRefGoogle Scholar
  5. 5.
    C.G. Granqvist, S. Green, G.A. Niklasson, N.R. Mlyuka, S. von Kræmer, and P. Georén, Thin Solid Films 518, 3046 (2010).CrossRefGoogle Scholar
  6. 6.
    V.R. Buch, A.K. Chawla, and S.K. Rawal, Mater. Today Proc. 3, 1429 (2016).CrossRefGoogle Scholar
  7. 7.
    N. Tripathi, L.D. Bell, S. Nikzad, M. Tungare, P.H. Suvarna, and F.S. Sandvik, J. Electron. Mater. 40, 382 (2011).CrossRefGoogle Scholar
  8. 8.
    A. Bahari and M. Shahbazi, J. Electron. Mater. 45, 1201 (2016).CrossRefGoogle Scholar
  9. 9.
    H. Najafi-Ashtiani, A. Bahari, and S. Ghasemi, Organ. Electron. 37, 213 (2016).CrossRefGoogle Scholar
  10. 10.
    P. Kumar, K.S. Narayan, S. Guha, and F. Shahedipour-Sandvik, Organ. Electron. 14, 2818 (2013).CrossRefGoogle Scholar
  11. 11.
    R. Gholipur, Z. Khorshidi, and A. Bahari, ACS Appl. Mater. Interfaces 9, 12528 (2017).CrossRefGoogle Scholar
  12. 12.
    F. Shahedipour-Sandvik and B.W. Wessels, Appl. Phys. Lett. 76, 3011 (2000).CrossRefGoogle Scholar
  13. 13.
    X.A. Cao, K. Topol, F. Shahedipour-Sandvik, J. Teetsov, P.M. Sandvik, S.E. LeBoeuf, A. Ebong, J.W. Kretchmer, E.B. Stokes, S. Arthur, and A.E. Kaloyeros, in Proceedings of SPIE 4776, Solid State Lighting II (2002)Google Scholar
  14. 14.
    C.P. Cheng, Y. Kuo, C.P. Chou, C.H. Cheng, and T.P. Teng, Appl. Phys. A Mater. Sci. Process. 116, 1553 (2014).CrossRefGoogle Scholar
  15. 15.
    K.J. Patel, C.J. Panchal, M.S. Desai, and P.K. Mehta, Mater. Chem. Phys. 124, 884 (2010).CrossRefGoogle Scholar
  16. 16.
    R. Baetens, B.P. Jelle, and A. Gustavsen, Sol. Energy Mater. Sol. Cells 94, 87 (2010).CrossRefGoogle Scholar
  17. 17.
    Y. Guo, X. Quan, N. Lu, H. Zhao, and S. Chen, Environ. Sci. Technol. 41, 4422 (2007).CrossRefGoogle Scholar
  18. 18.
    I.C. Amaechi, A.C. Nwanya, P.U. Asogwa, R.U. Osuji, M. Maaza, and F.I. Ezema, J. Electron. Mater. 44, 1110 (2015).CrossRefGoogle Scholar
  19. 19.
    A.H. Ramezani, S. Hoseinzadeh, and A. Bahari, J. Inorg. Organomet. Polym. First Online: 02 January (2018).Google Scholar
  20. 20.
    C.G. Granqvist, Sol. Energy Mater. Sol. Cells 99, 1 (2012).CrossRefGoogle Scholar
  21. 21.
    V.V. Ganbavle, J.H. Kim, and K.Y. Rajpure, J. Electron. Mater. 44, 874 (2015).CrossRefGoogle Scholar
  22. 22.
    S.-H. Park, S.-M. Lee, E.-H. Ko, T.-H. Kim, Y.-C. Nah, S.-J. Lee, J.H. Lee, and H.-K. Kim, Sci. Rep. 6, 33868 (2016).CrossRefGoogle Scholar
  23. 23.
    R.R. Kharade, S.S. Mali, S.P. Patil, K.R. Patil, M.G. Gang, P.S. Patil, J.H. Kim, and P.N. Bhosale, Electrochim. Acta 102, 358 (2013).CrossRefGoogle Scholar
  24. 24.
    H. Li, Y. Lv, X. Zhang, X. Wang, and X. Liu, Sol. Energy Mater. Sol. Cells 136, 86 (2015).CrossRefGoogle Scholar
  25. 25.
    K.W. Park, Electrochim. Acta 50, 4690 (2005).CrossRefGoogle Scholar
  26. 26.
    H. Huang, J. Tian, W.K. Zhang, Y.P. Gan, X.Y. Tao, X.H. Xia, and J.P. Tu, Electrochim. Acta 56, 4281 (2011).CrossRefGoogle Scholar
  27. 27.
    C. Feng, S. Wang, and B. Geng, Nanoscale 3, 3699 (2011).Google Scholar
  28. 28.
    D. Dastan, S.L. Panahi, and N.B. Chaure, J. Mater. Sci. Mater. Electron. 27, 12291 (2016).CrossRefGoogle Scholar
  29. 29.
    D. Dastan and A. Banpurkar, J. Mater. Sci. Mater. Electron. 28, 3851 (2016).CrossRefGoogle Scholar
  30. 30.
    S.B. Upadhyay, R.K. Mishra, and P.P. Sahay, Ceram. Int. 42, 15601 (2016).Google Scholar
  31. 31.
    M. Reghima, A. Akkari, C. Guasch, and N. Kamoun-Turki, J. Electron. Mater. 44, 4392 (2015).CrossRefGoogle Scholar
  32. 32.
    S. Karthika, V. Prathibha, M.K.A. Ann, V. Viji, P.R. Biju, and N.V. Unnikrishnan, J. Electron. Mater. 43, 447 (2014).CrossRefGoogle Scholar
  33. 33.
    V. Vidyadharan, P. Vasudevan, S. Karthika, C. Joseph, N.V. Unnikrishnan, and P.R. Biju, J. Electron. Mater. 44, 2754 (2015).CrossRefGoogle Scholar
  34. 34.
    H. Wei, J. Zhu, S. Wu, S. Wei, and Z. Guo, Polymer (United Kingdom) 54, 1820 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • S. Hoseinzadeh
    • 1
  • R. Ghasemiasl
    • 1
  • A. Bahari
    • 2
  • A. H. Ramezani
    • 3
  1. 1.Department of Mechanical Engineering, West Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Faculty of Basic Sciences, Department of PhysicsUniversity of MazandaranBabolsarIran
  3. 3.Department of Physics, West Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations