Skip to main content
Log in

The Effect of Thermal Annealing and Measurement Temperature on Interface State Density Distribution and Time Constant in Ni/n-GaP Rectifying Contacts

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The capacitance–frequency (Cf) and conductance–frequency (Gf) characteristics of the as-deposited and 400°C annealed Ni/n-GaP/Al diode were measured in a temperature range of 100–320 K with steps of 20 K. The values of interface state density Nss and their time constant were obtained from the temperature-dependent Cf and Gf characteristics in the measurement frequency range of 5.0 kHz to 5 MHz. The effect of annealing and measurement temperature on Nss and time constant of a Ni/n-GaP Schottky diode were analyzed from the forward bias voltage to the reverse bias voltage − 0.60 with steps of 0.30 V. The Nss value ranges from 8.8 × 1011 cm−2eV−1 at 0.60 V to 5.71 × 1011 cm−2eV−1 at − 0.60 V for the as-deposited diode, and 1.3 × 1012 cm−2eV−1 at 0.60 V to 5.5 × 1011 cm−2eV−1 at − 0.60 V for the 400°C annealed diode at a measurement temperature of 300 K. The interface state density value increases with high measurement temperature for the as-deposited and annealed diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Oxford: Clarendon, 1988).

    Google Scholar 

  2. D.A. Neamen, Semiconductor Physics and Devices: Basic Principles, 4th ed. (New York: McGraw-Hill, 2012).

    Google Scholar 

  3. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981).

    Google Scholar 

  4. M.S.P. Reddy, P. Puneetha, V.R. Reddy, J.H. Lee, S.H. Jeong, and C. Park, J. Electron. Mater. 45, 5655 (2016).

    Article  Google Scholar 

  5. R.H. Williams and G.Y. Robinson, Physics and Chemistry of III-V Compound Semiconductor Interfaces (New York: Plenum, 1985).

    Google Scholar 

  6. W. Mönch, Semiconductor Surfaces and Interfaces, 2nd ed. (Berlin: Springer, 1995).

    Book  Google Scholar 

  7. N. Shiwakoti, A. Bobby, B. Antony, and K. Asokan, J. Vac. Sci. Technol., B 34, 051206 (2016).

    Article  Google Scholar 

  8. N. Shiwakoti, A. Bobby, K. Asokan, and B. Antony, Mater. Sci. Semicond. Process. 42, 378 (2016).

    Article  Google Scholar 

  9. A. Owens, S. Andersson, R. den Hartog, F. Quarati, A. Webb, and E. Welter, Nucl. Instrum. Methods Phys. Res. A. 581, 709 (2007).

    Article  Google Scholar 

  10. E. Kabushemeyet, R.L. Van Meirhaeghe, W.H. Laflere, and F. Cardon, Semicond. Sci. Technol. 4, 543 (1989).

    Article  Google Scholar 

  11. A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, A.B. Kamalov, L.M. Kapitanchuk, R.V. Konakova, Y.Y. Kudryk, O.S. Lytvyn, V.V. Milenin, and M.U. Nasyrov, Semiconductors 42, 453 (2008).

    Article  Google Scholar 

  12. Y. Nannichi and G.L. Pearson, Solid-State Electron. 12, 341 (1969).

    Article  Google Scholar 

  13. A. Türüt, H. Doğan, and N. Yıldırım, Mater. Res. Express 2, 096304 (2015).

    Article  Google Scholar 

  14. H. Tecimer, H. Uslu, Z.A. Alahmed, F. Yakuphanoglu, and Ş. Altındal, Compos. Part B 57, 25 (2014).

    Article  Google Scholar 

  15. S. Duman, K. Ejderha, Ö. Yiğit, and A. Türüt, Microelectron. Reliab. X 52, 1005 (2016).

    Article  Google Scholar 

  16. Ö. Güllü and A. Türüt, J. Vac. Sci. Technol., B 28, 466 (2010).

    Article  Google Scholar 

  17. M. Asghar, K. Mahmood, F. Malik, and M.A. Hasan, J. Phys: Conf. Ser. 439, 012031 (2013).

    Google Scholar 

  18. İ. Orak, K. Ejderha, and A. Turut, Curr. Appl. Phys. 15, 1054 (2015).

    Article  Google Scholar 

  19. H. Dogan, N. Yıldırım, İ. Orak, S. Elagöz, and A. Turut, Phys. B 457, 48 (2015).

    Article  Google Scholar 

  20. S. Duman, B. Gurbulak, S. Dogan, and A. Türüt, Vacuum 85, 798 (2011).

    Article  Google Scholar 

  21. P. Pipinys, A. Rimeika, and A. Pipiniene, Solid-State Electron. 46, 1283 (2002).

    Article  Google Scholar 

  22. Ç. Bilkan and S. Altındal, J. Alloys Compd. 708, 464 (2017).

    Article  Google Scholar 

  23. Z. Ouennoughi and A. Sella, Int. J. Electron. 83, 571 (1997).

    Article  Google Scholar 

  24. R. Padma, K. Sreenu, and V. Rajagopal, Reddy. J. Alloys Compd. 695, 2587 (2017).

    Article  Google Scholar 

  25. A. Singh, Solid-State Electron. 28, 233 (1985).

    Article  Google Scholar 

  26. V. Rajagopal, Reddy. Indian J. Phys. 89, 463 (2015).

    Article  Google Scholar 

  27. İ. Orak, K. Ejderha, E. Sönmez, M. Alanyalıoglu, and A. Turut, Mater. Res. Bull. 61, 463 (2014).

    Article  Google Scholar 

  28. A. Turut, B. Bati, A. Kokce, M. Saglam, and N. Yalcin, Phys. Scr. 53, 118 (1996).

    Article  Google Scholar 

  29. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  Google Scholar 

  30. S. Mahato, D. Biswas, L.G. Gerling, C. Voz, and J. Puigdollers, AIP Adv. 7, 085313 (2017).

    Article  Google Scholar 

  31. B. Bati, C. Nuhoglu, M. Saglam, E. Ayyildiz, and A. Turut, Phys. Scr. 61, 209 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ejderha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejderha, K., Orak, I., Duman, S. et al. The Effect of Thermal Annealing and Measurement Temperature on Interface State Density Distribution and Time Constant in Ni/n-GaP Rectifying Contacts. J. Electron. Mater. 47, 3502–3509 (2018). https://doi.org/10.1007/s11664-018-6192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6192-y

Keywords

Navigation