Skip to main content
Log in

Photocatalytic Active Bismuth Fluoride/Oxyfluoride Surface Crystallized 2Bi2O3-B2O3 Glass–Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present article deals with 2Bi2O3-B2O3 (BBO) glass whose photocatalytic activity has been enhanced by the method of wet etching using an aqueous solution of hydrofluoric acid (HF). X-ray diffraction of the samples reveals that etching with an aqueous solution of HF leads to the formation of BiF3 and BiO0.1F2.8 phases. Surface morphology obtained from scanning electron microscopy show granular and plate-like morphology on the etched glass samples. Rhodamine 6G (Rh 6G) has been used to investigate the photocatalytic activity of the as-quenched and etched glasses. Enhanced visible light-driven photocatalytic activity was observed in HF etched glass-ceramics compared to the as-quenched BBO glass. Contact angle of the as-quenched glass was 90.2°, which decreases up to 20.02° with an increase in concentration of HF in the etching solution. Enhanced photocatalytic activity and increase in the hydrophilic nature suggests the efficient treatment of water pollutants by using the prepared surface crystallized glass–ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Minami, A. Hayashi, and M. Tatsumisago, Solid State Ion. 177, 2715 (2006).

    Article  Google Scholar 

  2. E.D. Zanotto, Am. Ceram. Soc. Bull. 89, 19 (2010).

    Google Scholar 

  3. W. Pannhorst, J. Non Cryst. Solids 219, 198 (1997).

    Article  Google Scholar 

  4. T. Kokubo, Biomaterials 12, 155 (1991).

    Article  Google Scholar 

  5. G. Kaur, O.P. Pandey, K. Singh, D. Homa, B. Scott, and G. Pickrell, J. Biomed. Mater. Res. Part A 102, 254 (2014).

    Article  Google Scholar 

  6. C. McCullagh, J.M. Robertson, D.W. Bahnemann, and P.K. Robertson, Res. Chem. Intermed. 33, 359 (2007).

    Article  Google Scholar 

  7. K. Kabra, R. Chaudhary, and R.L. Sawhney, Ind. Eng. Chem. Res. 43, 7683 (2004).

    Article  Google Scholar 

  8. A.K. Yadav and C. Gautam, J. Mater. Sci. Mater. Electron. 25, 5165 (2014).

    Article  Google Scholar 

  9. S.K. Sharma, V. Singh, V.S. Chauhan, H. Kushwaha, and R. Vaish, J. Appl. Phys. 122, 094901 (2017).

    Article  Google Scholar 

  10. H. Kushwaha, G. Parmesh, R. Vaish, and K. Varma, J. Non Cryst. Solids 408, 13 (2015).

    Article  Google Scholar 

  11. F.H. Margha, M.I. Badawy, and T.A. Gad-Allah, Environ. Prog. Sustain. Energy 36, 442 (2016).

    Article  Google Scholar 

  12. S. Cao, P. Zhou, and J. Yu, Chin. J. Catal. 35, 989 (2014).

    Article  Google Scholar 

  13. C. Pan and Y. Zhu, Environ. Sci. Technol. 44, 5570 (2010).

    Article  Google Scholar 

  14. H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, and Y. Zhang, ACS Appl. Mater. Interfaces. 7, 482 (2015).

    Article  Google Scholar 

  15. H. Huang, Y. He, X. Li, M. Li, C. Zeng, F. Dong, X. Du, T. Zhang, and Y. Zhang, J. Mater. Chem. A 3, 24547 (2015).

    Article  Google Scholar 

  16. H. Huang, X. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang, and Y. Zhang, ACS Catal. 5, 4094 (2015).

    Article  Google Scholar 

  17. H. Huang, Y. He, Z. Lin, L. Kang, and Y. Zhang, J. Phys. Chem. C 117, 22986 (2013).

    Article  Google Scholar 

  18. X. Lin, T. Huang, F. Huang, W. Wang, and J. Shi, J. Phys. Chem. B 110, 24629 (2006).

    Article  Google Scholar 

  19. W. Su, J. Wang, Y. Huang, W. Wang, L. Wu, X. Wang, and P. Liu, Scr. Mater. 62, 345 (2010).

    Article  Google Scholar 

  20. C. Feng, F. Teng, Z. Liu, C. Chang, Y. Zhao, S. Wang, M. Chen, W. Yao, and Y. Zhu, J. Mol. Catal. A Chem. 401, 35 (2015).

    Article  Google Scholar 

  21. K.-L. Zhang, C.-M. Liu, F.-Q. Huang, C. Zheng, and W.-D. Wang, Appl. Catal. B 68, 125 (2006).

    Article  Google Scholar 

  22. X. Zhang, Z. Ai, F. Jia, and L. Zhang, The Journal of Physical Chemistry C 112, 747 (2008).

    Article  Google Scholar 

  23. L. Lin, M. Huang, and D. Chen, Molecules 21, 666 (2016).

    Article  Google Scholar 

  24. M. Butler, J. Appl. Phys. 48, 1914 (1977).

    Article  Google Scholar 

  25. W.L. Huang and Q. Zhu, Comput. Mater. Sci. 43, 1101 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

Rahul Vaish thanks to Science and Engineering Research board (SERB), New Delhi for financial support (YSS/2014/000925). Sumeet Kumar Sharma thanks Department of Science and Technology (DST), New Delhi for the INSPIRE fellowship (IF150246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Vaish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S.K., Singh, V.P., Chauhan, V.S. et al. Photocatalytic Active Bismuth Fluoride/Oxyfluoride Surface Crystallized 2Bi2O3-B2O3 Glass–Ceramics. J. Electron. Mater. 47, 3490–3496 (2018). https://doi.org/10.1007/s11664-018-6189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6189-6

Keywords

Navigation