Skip to main content
Log in

A Comparative Study of Chemically and Biologically Synthesized MgO Nanomaterial for Liquefied Petroleum Gas Detection

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The exceptional chemical and physical properties of nanostructured materials are extremely suitable for designing new and enhanced sensing devices, particularly gas sensors and biosensors. The present work describes the synthesis of magnesium oxide (MgO) nanoparticles through two methods: a green synthesis using aloe vera plant extract and a chemical method using a glycine-based solution combustion route. In a single step, the extracted organic molecules from aloe vera plants were used to reduce metal ions by the green method. MgO nanoparticles were coated onto the interdigital electrode using the drop-drying method. The dynamic gas-sensing characteristics were measured for liquefied petroleum gas (LPG) at different concentrations and various temperatures. The MgO nanoparticles were characterized by using x-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy to determine the size and structure of the particles. The product’s functional properties were analyzed by Fourier transform-infrared spectroscopy and UV–visible spectroscopy. We found that the LPG sensing behavior of biologically synthesized MgO registers excellent sensitivity at various operating temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Garje and S.N. Sadakale, Adv. Mater. Lett 4, 58 (2013).

    Article  Google Scholar 

  2. C. Wang, L. Yin, L. Zhang, and D. Xiang, RuiGao. Sensors 10, 2088 (2010).

    Article  Google Scholar 

  3. G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007).

    Article  Google Scholar 

  4. A.M. Alper, Phase Diagrams, Materials Science and Technology. Vol. III: The Use of Phase Diagrams in Electronic Materials and Glass Technology (New York: Academic Press, 1970).

  5. E. Florez, P. Fuentealba, and F. Mondragon, Catal. Today 216, 133 (2008).

    Google Scholar 

  6. R. Halder and S. Bandyopadhyay, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.09.164.

    Google Scholar 

  7. C.A. Downing, A.A. Sokol, and C.R.A. Catlow, Phys. Chem. Chem. Phys. 16, 184 (2014).

    Article  Google Scholar 

  8. G. Thangamani, J.K. Deshmukh, K.K. Sadasivuni, D. Ponnamma, S. Goutham, K.V. Rao, K. Chidambaram, M.B. Ahamed, A.N. Grace, and S.K.K. Pasha, Microchim. Acta (2017). https://doi.org/10.1007/s00604-017-2402-1.

    Google Scholar 

  9. A. Chandran, J. Prakash, K.K. Naik, A.K. Srivastava, R. Dabrowski, M. Czerwinskic, and A.M. Biradara, J. Mater. Chem. C 2, 1844 (2014).

    Article  Google Scholar 

  10. D. Thomas, A. Thomas, A.E. Tom, D. Ponnamma, S. Goutham, J.J. Cabibihan, K.V. Rao, and K.K. Sadasivuni, Synth. Met. 232, 123 (2017).

    Article  Google Scholar 

  11. S. Goutham, S. Kaur, K.K. Sadasivuni, J.K. Bal, N. Jayarambabu, D.S. Kumar, and K.V. Rao, Mater. Sci. Semicond. Process. 57, 110 (2017).

    Article  Google Scholar 

  12. S. Goutham, S. Bykkam, K.K. Sadasivuni, D.S. Kumar, M. Ahmadipour, Z.A. Ahmad, and K.V. Rao, Microchim. Acta 185, 1 (2018).

    Article  Google Scholar 

  13. S. Pandey, G.K. Goswami, and K.K. Nanda, Carbohydr. Polym. 94, 229 (2013).

    Article  Google Scholar 

  14. P. Mohanpuria, N.K. Rana, and S.K. Yadav, J. Nanopart. Res. 10, 507 (2008).

    Article  Google Scholar 

  15. D.S. Dhawale, D.P. Dubal, A.M. More, T.P. Gujar, and C.D. Lokhande, Sens. Actuator B Chem. 147, 488 (2010).

    Article  Google Scholar 

  16. S. Goutham, K.K. Sadasivuni, D.S. Kumar, and K. Venkateswara Rao, RSC Adv. 8, 3243 (2017).

    Article  Google Scholar 

  17. S.V. Patil, R.N. Bulakhe, P.R. Deshmukh, N.M. Shinde, and C.D. Lokhande, Sens. Actuator A Phys. 394, 201 (2013).

    Google Scholar 

  18. D.S. Dhawale, D.P. Dubal, V.S. Jamadade, R.R. Salunkhe, S.S. Joshi, and C.D. Lokhande, Sensor Actuator B Chem. 145, 205 (2009).

    Article  Google Scholar 

  19. B. Baruwati, D.K. Kumar, and S.V. Manorama, Sens. Actuator B Chem. 119, 676 (2006).

    Article  Google Scholar 

  20. X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, and J.G. Zhao, Sens. Actuator B Chem. 102, 248 (2004).

    Article  Google Scholar 

  21. V.R. Shinde, T.P. Gujar, and C.D. Lokhande, Sens. Actuator B Chem. 120, 551 (2006).

    Article  Google Scholar 

  22. M. Gürbüz, G. Günkaya, and A. Doğan, Appl. Surf. Sci. 318, 334 (2014).

    Article  Google Scholar 

  23. M.E. Franke, T.J. Koplin, and U. Simon, Small 2, 36 (2006).

    Article  Google Scholar 

  24. A.K. Mittal, Y. Chisti, and U.C. Banerjee, Biotechnol. Adv. 31, 346 (2013).

    Article  Google Scholar 

  25. D. Thomas, A. Thomas, A.E. Tom, D. Ponnamma, S. Goutham, J.J. Cabibihan, K.V. Rao, and K.K. Sadasivuni, Synth. Met. 232, 123 (2017).

    Article  Google Scholar 

  26. S. Goutham, D.S. Kumar, K.K. Sadasivuni, J.J. Cabibihan, and K.V. Rao, J. Electron. Mater. 46, 2334 (2017).

    Article  Google Scholar 

  27. A.A. Oladipo, O.J. Adeleye, A.S. Oladipo, and A.O. Aleshinloye, J. Water Process Eng. 16, 142 (2017).

    Article  Google Scholar 

  28. R.A. Buchanan, H.H. Caspers, and J. Murphy, Appl. Opt. 2, 1147 (1963).

    Article  Google Scholar 

  29. M. Takata, D. Tsubone, and H. Yanagida, J. Am. Ceram. Soc. 59, 4 (1976).

    Article  Google Scholar 

  30. Y. Tao, X. Cao, Y. Peng, and Y. Liu, Sens. Actuator B Chem. 148, 292 (2010).

    Article  Google Scholar 

  31. C.C. Wu, X. Cao, Q. Wen, Z. Wang, Q. Gao, and H. Zhu, Talanta 79, 1223 (2009).

    Article  Google Scholar 

  32. Y. Chu, Q. Zhang, W. Zhang, G. Zhang, and S. Zhu, Meas. Sci. Technol. 25, 2 (2014).

    Article  Google Scholar 

  33. H.Y. Li, H. Yang, and X. Guo, Sens. Actuator B Chem. 213, 102 (2015).

    Article  Google Scholar 

  34. P. Tyagi, A. Sharma, M. Tomar, and V. Gupta, Article ID 812627, 4 pages (2014). http://dx.doi.org/10.1155/2014/812627.

Download references

Acknowledgements

The authors sincerely acknowledge the Center for Nano Science and Technology (CNST), Institute of Science and Technology (IST), Jawaharlal Nehru Technological University Hyderabad for providing gas sensing facilities to carry out the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalagadda Venkateswara Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirupathi, R., Solleti, G., Sreekanth, T. et al. A Comparative Study of Chemically and Biologically Synthesized MgO Nanomaterial for Liquefied Petroleum Gas Detection. J. Electron. Mater. 47, 3468–3473 (2018). https://doi.org/10.1007/s11664-018-6185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6185-x

Keywords

Navigation