Skip to main content
Log in

Effect of Ca2+ Ions on Electrical Properties of Ba1−xCa x Ti0.90Sn0.10O3–0.05Y2O3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ba1−xCa x Ti0.90Sn0.10O3–0.05Y2O3 (BCTSY) lead-free piezoceramics with x = 0.02 to 0.10 have been fabricated by solid-state sintering method at 1420°C. The effects of Ca2+ ions on the microstructure and electrical properties of the samples were studied. X-ray diffraction analysis showed that all samples possessed pure perovskite structure with Ca2+ ions diffused into the matrix lattice. The rhombohedral phase and tetragonal phase coexisted in the composition range of 0.02 < x < 0.06. The microstructure of BCTSY ceramic became more homogeneous with addition of Ca2+ ions, and the average grain size of the samples decreased from 97 μm (x = 0.02) to 18 μm (x = 0.10). Addition of Ca2+ remarkably improved the piezoelectric properties, enhanced the dielectric frequency dispersion, and increased the Curie temperature of the ceramics. The piezoelectric properties of the ceramics were optimized at x = 0.04 with d33 and Kp values of 579 pC/N and 52.7%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Liu and X. Ren, Phys. Rev. Lett. 103, 257602 (2009).

    Article  Google Scholar 

  2. W. Li, Z. Xu, R.Q. Chu, P. Fu, and G.Z. Zang, J. Eur. Ceram. Soc. 32, 517 (2011).

    Article  Google Scholar 

  3. H. Takahashi, Y. Numamoto, J. Tani, and S. Tsurekawa, Jpn. J. Appl. Phys. 45, 7405 (2006).

    Article  Google Scholar 

  4. S.F. Shao, J.L. Zhang, Z. Zhang, P. Zheng, M.L. Zhao, J.C. Li, and C.L. Wang, J. Phys. D Appl. Phys. 41, 125408 (2008).

    Article  Google Scholar 

  5. S.W. Zhang, H. Zhang, B.P. Zhang, and G. Zhao, J. Eur. Ceram. Soc. 29, 3235 (2009).

    Article  Google Scholar 

  6. W. Li, Z.J. Xu, R.Q. Chu, P. Fang, and G.Z. Zang, J. Eur. Ceram. Soc. 32, 517 (2012).

    Article  Google Scholar 

  7. L.F. Zhu, B.P. Zhang, X.K. Zhao, and L. Zhao, J. Am. Ceram. Soc. 96, 241 (2013).

    Article  Google Scholar 

  8. L. Zhao, B.P. Zhang, P.F. Zhou, L.F. Zhu, and N. Wang, Ceram. Int. 42, 1086 (2016).

    Article  Google Scholar 

  9. Z.H. Chen, Z.W. Li, J.J. Xu, H.F. Guo, J.H. Qiu, and Y. Yang, J. Alloys Compd. 720, 562 (2017).

    Article  Google Scholar 

  10. Z.H. Chen, Z.W. Li, J.J. Ding, J.H. Qiu, and Y. Yang, J. Alloys Compd. 704, 193 (2017).

    Article  Google Scholar 

  11. Z.H. Chen, Z.W. Li, J.J. Ding, J.H. Qiu, and Y. Yang, J. Alloys Compd. 704, 141 (2017).

    Article  Google Scholar 

  12. C. Kuper, R. Pankrath, and H. Hesse, Appl. Phys. A 65, 301 (1997).

    Article  Google Scholar 

  13. Y.D. Hao, J.Q. Zhao, Y.K. Zheng, S.P. Gong, and D.X. Zhou, Mater. Sci. Eng. B 99, 516 (2003).

    Article  Google Scholar 

  14. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (London: Academic, 1971).

    Google Scholar 

  15. M.L. Chen, Z.J. Xu, R.Q. Chu, Z. Wang, S.S. Gao, G.H. Yu, W. Li, S.W. Gong, and G.R. Li, Mater. Res. Bull. 59, 305 (2014).

    Article  Google Scholar 

  16. R.S. Sailva, L.M. Jesus, T.C. Oliverra, D.V. Sampaio, and J.C.A. Santos, J. Eur. Ceram. Soc. 36, 4023 (2016).

    Article  Google Scholar 

  17. M.R. Panigrahi and S. Panigrahi, Phys. B 405, 1787 (2010).

    Article  Google Scholar 

  18. M. Chen, Z. Xu, R. Chu, Y. Liu, L. Shao, W. Li, S. Gong, and G. Li, Mater. Lett. 97, 86 (2013).

    Article  Google Scholar 

  19. P. Long, X. Liu, X. Long, and Z. Yi, J. Alloys Compd. 706, 234 (2017).

    Article  Google Scholar 

  20. D. Liang, X. Zhu, Y. Zhang, W. Shi, and J. Zhu, Ceram. Int. 41, 8261 (2015).

    Article  Google Scholar 

  21. K.H. Yoon, J.H. Kim, K.H. Jo, H.I. Song, S.O. Yoon, and C.S. Kim, J. Mater. Sci. 23, 61 (1988).

    Article  Google Scholar 

  22. Y. Tian, L.L. Wei, X.L. Chao, Z.H. Liu, and Z.P. Yang, J. Am. Ceram. Soc. 96, 496 (2013).

    Google Scholar 

  23. W. Cao and C.A. Randall, J. Phys. Chem. Solids 57, 1499 (1996).

    Article  Google Scholar 

  24. W. Li, Z.J. Xue, R.Q. Chu, P. Fu, and G.Z. Zang, J. Am. Ceram. Soc. 94, 4131 (2011).

    Article  Google Scholar 

  25. N. Horchidan, A.C. Ianculescu, C.A. Vasilescu, M. Deluca, V. Musteata, H. Ursic, R. Frunza, B. Malic, and L. Mitoseriu, J. Eur. Ceram. 34, 3661 (2014).

    Article  Google Scholar 

  26. H. Orihara, S. Hashimoto, and Y. Ishibashi, J. Phys. Soc. Jpn. 63, 1031 (1994).

    Article  Google Scholar 

  27. J. Hao, W. Bai, W. Li, and J. Zhai, J. Am. Ceram. Soc. 95, 1998 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-hui Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Zh., Li, Zw., Ding, Jn. et al. Effect of Ca2+ Ions on Electrical Properties of Ba1−xCa x Ti0.90Sn0.10O3–0.05Y2O3 Ceramics. J. Electron. Mater. 47, 3409–3413 (2018). https://doi.org/10.1007/s11664-018-6147-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6147-3

Keywords

Navigation