Depth Profile of Impurity Phase in Wide-Bandgap Cu(In1−x,Ga x )Se2 Film Fabricated by Three-Stage Process

  • Shenghao Wang
  • Takehiro Nazuka
  • Hideki Hagiya
  • Yutaro Takabayashi
  • Shogo Ishizuka
  • Hajime Shibata
  • Shigeru Niki
  • Muhammad M. Islam
  • Katsuhiro Akimoto
  • Takeaki Sakurai
Topical Collection: 17th Conference on Defects (DRIP XVII)
  • 5 Downloads
Part of the following topical collections:
  1. 17th Conference on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP XVII)

Abstract

For copper indium gallium selenide [Cu(In1−x,Ga x )Se2, CIGS]-based solar cells, defect states or impurity phase always form due to both the multinary compositions of CIGS film and the difficulty of controlling the growth process, especially for high Ga concentration. To further improve device performance, it is important to understand such formation of impurity phase or defect states during fabrication. In the work presented herein, the formation mechanism of impurity phase Cu2−δSe and its depth profile in CIGS film with high Ga content, in particular CuGaSe2 (i.e., CGS), were investigated by applying different growth conditions (i.e., normal three-stage process and two-cycle three-stage process). The results suggest that impurity phase Cu2−δSe is distributed nonuniformly in the film because of lack of Ga diffusion. The formed Cu2−δSe can be removed by etching the as-deposited CGS film with bromine-methanol solution, resulting in improved device performance.

Keywords

CIGS solar cell defect depth profile three-stage coevaporation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported in part by the Incorporated Administrative Agency, New Energy and Industrial Technology Development Organization (NEDO) under the Ministry of Economy, Trade, and Industry (METI).

Supplementary material

11664_2018_6120_MOESM1_ESM.pdf (944 kb)
Supplementary material 1 (PDF 944 kb)

References

  1. 1.
    R. Scheer, T. Walter, H.W. Schock, M.L. Fearheiley, and H.J. Lewerenz, Appl. Phys. Lett. 63, 3294 (1993).CrossRefGoogle Scholar
  2. 2.
    M. Kaelin, D. Rudmann, and A.N. Tiwari, Sol. Energy 77, 749 (2004).CrossRefGoogle Scholar
  3. 3.
    J.-F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H.-W. Schock, J. Phys. Chem. B 104, 4849 (2000).CrossRefGoogle Scholar
  4. 4.
    N. Takahito, T. Soma, S. Hiroki, N. Kazuyoshi, and Y. Akira, Appl. Phys. Express 9, 092301 (2016).CrossRefGoogle Scholar
  5. 5.
    A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A.N. Tiwari, Nat. Mater. 12, 1107 (2013).CrossRefGoogle Scholar
  6. 6.
    M.G. Panthani, V. Akhavan, B. Goodfellow, J.P. Schmidtke, L. Dunn, A. Dodabalapur, P.F. Barbara, and B.A. Korgel, J. Am. Chem. Soc. 130, 16770 (2008).CrossRefGoogle Scholar
  7. 7.
    S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, Prog. Photovolt. 18, 453 (2010).CrossRefGoogle Scholar
  8. 8.
    P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, Phys. Status Solidi-Rapid Res. Lett. 10, 583 (2016).CrossRefGoogle Scholar
  9. 9.
    R. Kamada, T. Yagioka, S. Adachi, A. Handa, K.F. Tai, T. Kato, and H. Sugimoto, in Proceedings of 43th IEEE PVSC (2016) pp. 1287–1291.Google Scholar
  10. 10.
    K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, Nat. Energy 2, 17032 (2017).CrossRefGoogle Scholar
  11. 11.
    M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, and A.W.H. Ho-Baillie, Prog. Photovolt. 25, 668 (2017).CrossRefGoogle Scholar
  12. 12.
    W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).CrossRefGoogle Scholar
  13. 13.
    I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi, Prog. Photovolt. 16, 235 (2008).CrossRefGoogle Scholar
  14. 14.
    H. Komaki, S. Furue, A. Yamada, S. Ishizuka, H. Shibata, K. Matsubara, and S. Niki, Prog. Photovolt. 20, 595 (2012).CrossRefGoogle Scholar
  15. 15.
    P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, and M. Powalla, Phys. Status Solidi-Rapid Res. Lett. 9, 28 (2015).CrossRefGoogle Scholar
  16. 16.
    G. Hanna, A. Jasenek, U. Rau, and H.W. Schock, Thin Solid Films 387, 71 (2001).CrossRefGoogle Scholar
  17. 17.
    Q. Cao, O. Gunawan, M. Copel, K.B. Reuter, S.J. Chey, V.R. Deline, and D.B. Mitzi, Adv. Energy Mater. 1, 845 (2011).CrossRefGoogle Scholar
  18. 18.
    P.K. Johnson, J.T. Heath, J.D. Cohen, K. Ramanathan, and J.R. Sites, Prog. Photovolt. 13, 579 (2005).CrossRefGoogle Scholar
  19. 19.
    Z. Djebbour, A. Darga, A. Migan Dubois, D. Mencaraglia, N. Naghavi, J.F. Guillemoles, and D. Lincot, Thin Solid Films 511–512, 320 (2006).CrossRefGoogle Scholar
  20. 20.
    T. Sakurai, H. Uehigashi, M.M. Islam, T. Miyazaki, S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, S. Niki, and K. Akimoto, Thin Solid Films 517, 2403 (2009).CrossRefGoogle Scholar
  21. 21.
    U. Malm and M. Edoff, Prog. Photovolt. 17, 306 (2009).CrossRefGoogle Scholar
  22. 22.
    X. Hu, T. Sakurai, A. Yamada, S. Ishizuka, S. Niki, and K. Akimoto, J. Appl. Phys. 116, 163703 (2014).CrossRefGoogle Scholar
  23. 23.
    S. Heo, J. Chung, H.-I. Lee, J. Lee, J.-B. Park, E. Cho, K. Kim, S.H. Kim, G.S. Park, D. Lee, J. Lee, J. Nam, J. Yang, D. Lee, H.Y. Cho, H.J. Kang, P.-H. Choi, and B.-D. Choi, Sci. Rep. 6, 30554 (2016).CrossRefGoogle Scholar
  24. 24.
    A. Uedono, M.M. Islam, T. Sakurai, C. Hugenschmidt, W. Egger, R. Scheer, R. Krause-Rehberg, and K. Akimoto, Thin Solid Films 603, 418 (2016).CrossRefGoogle Scholar
  25. 25.
    S. Nishiwaki, S. Siebentritt, P. Walk, and MCh Lux-Steiner, Prog. Photovolt. 11, 243 (2003).CrossRefGoogle Scholar
  26. 26.
    F. Larsson, N.S. Nilsson, J. Keller, C. Frisk, V. Kosyak, M. Edoff, and T. Törndahl, Prog. Photovolt. 25, 755 (2017).CrossRefGoogle Scholar
  27. 27.
    B. Marsen, B. Cole, and E.L. Miller, Sol. Energy Mater. Sol. Cells 92, 1054 (2008).CrossRefGoogle Scholar
  28. 28.
    M. Moriya, T. Minegishi, H. Kumagai, M. Katayama, J. Kubota, and K. Domen, J. Am. Chem. Soc. 135, 3733 (2013).CrossRefGoogle Scholar
  29. 29.
    W. Witte, R. Kniese, and M. Powalla, Thin Solid Films 517, 867 (2008).CrossRefGoogle Scholar
  30. 30.
    V. Lesnyak, R. Brescia, G.C. Messina, and L. Manna, J. Am. Chem. Soc. 137, 9315 (2015).CrossRefGoogle Scholar
  31. 31.
    M.M. Islam, A. Uedono, S. Ishibashi, K. Tenjinbayashi, T. Sakurai, A. Yamada, S. Ishizuka, K. Matsubara, S. Niki, and K. Akimoto, Appl. Phys. Lett. 98, 112105 (2011).CrossRefGoogle Scholar
  32. 32.
    M.M. Islam, A. Uedono, T. Sakurai, A. Yamada, S. Ishizuka, K. Matsubara, S. Niki, and K. Akimoto, J. Appl. Phys. 113, 064907 (2013).CrossRefGoogle Scholar
  33. 33.
    J.H. Shi, Z.Q. Li, D.W. Zhang, Q.Q. Liu, Z. Sun, and S.M. Huang, Prog. Photovolt. 19, 160 (2011).CrossRefGoogle Scholar
  34. 34.
    M.A. Hossain, M. Wang, and K.-L. Choy, ACS Appl. Mater. Interfaces 7, 22497 (2015).CrossRefGoogle Scholar
  35. 35.
    W. Witte, D. Abou-Ras, K. Albe, G.H. Bauer, F. Bertram, C. Boit, R. Brüggemann, J. Christen, J. Dietrich, A. Eicke, D. Hariskos, M. Maiberg, R. Mainz, M. Meessen, M. Müller, O. Neumann, T. Orgis, S. Paetel, J. Pohl, H. Rodriguez-Alvarez, R. Scheer, H.-W. Schock, T. Unold, A. Weber, and M. Powalla, Prog. Photovolt. 23, 717 (2015).CrossRefGoogle Scholar
  36. 36.
    J. Liu, D. Zhuang, M. Cao, X. Li, M. Xie, and D. Xu, Vacuum 102, 26 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Shenghao Wang
    • 1
    • 3
  • Takehiro Nazuka
    • 1
  • Hideki Hagiya
    • 1
  • Yutaro Takabayashi
    • 1
  • Shogo Ishizuka
    • 2
  • Hajime Shibata
    • 2
  • Shigeru Niki
    • 2
  • Muhammad M. Islam
    • 1
  • Katsuhiro Akimoto
    • 1
  • Takeaki Sakurai
    • 1
  1. 1.Institute of Applied PhysicsUniversity of TsukubaTsukubaJapan
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  3. 3.Materials Genome InstituteShanghai UniversityShanghaiChina

Personalised recommendations