Characterization and Electrical Response to Humidity of Sintered Polymeric Electrospun Fibers of Vanadium Oxide-(\({\hbox{TiO}}_{{2}} /{\hbox{WO}}_{{3}} \))

  • E. S. Araújo
  • J. Libardi
  • P. M. Faia
  • H. P. de Oliveira
Article
  • 6 Downloads

Abstract

Metal oxide composites have attracted much consideration due to their promising applications in humidity sensors in response to the physical and chemical property modifications of the resulting materials. This work focused on the preparation, microstructural characterization and analysis of humidity-dependent electrical properties of undoped and vanadium oxide (V2O5)-doped titanium oxide/tungsten oxide (TiO2/WO3) sintered ceramic films obtained by electrospinning. The electrical properties were investigated by impedance spectroscopy (400 Hz–40 MHz) as a function of relative humidity (RH). The results revealed a typical transition in the transport mechanisms controlled by the appropriated doping level of V2O5, which introduces important advantages to RH detection due to the atomic substitution of titanium by vanadium atoms in highly doped structures. These aspects are directly related to the microstructure modification and structure fabrication procedure.

Keywords

Ceramic composites relative humidity electrospinning microstructural properties electrical characterization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by FEDER funds, FCT funds - project UID/EMS/00285/2013, CNPq - projects (202451/2015-1) and (248958/2013-5).

References

  1. 1.
    Z. Chen and C. Lu, Sensor Lett. 3, 274 (2005).CrossRefGoogle Scholar
  2. 2.
    H. Farahani, R. Wagiran, and M.N. Hamidon, Sensors 14, 7881 (2014).CrossRefGoogle Scholar
  3. 3.
    T. Nenov and Z. Nenova, Ceram. Int. 39, 4465 (2013).CrossRefGoogle Scholar
  4. 4.
    P.M. Faia, J. Libardi, and C.S. Louro, Sens. Actuators B 222, 953 (2016).CrossRefGoogle Scholar
  5. 5.
    P.M. Faia and J. Libardi, Sens. Actuators B 236, 682 (2016).CrossRefGoogle Scholar
  6. 6.
    A.-M. Al-syadi, E.S. Yousef, M.M. El-Desoky, and M.S. Al-Assiri, Solid State Sci. 26, 72 (2013).CrossRefGoogle Scholar
  7. 7.
    J.C. Badot, A. Mantoux, N. Baffier, O. Dubrunfaut, and D. Lincotd, J. Mater. Chem. 14, 3411 (2004).CrossRefGoogle Scholar
  8. 8.
    E.S. Araújo, B.P. da Costa, R.A.P. Oliveira, J. Libardi, P.M. Faia, and H.P. de Oliveira, J. Environ. Chem. Eng. 4, 2820 (2016).CrossRefGoogle Scholar
  9. 9.
    B.S. Shirke, P.V. Korake, P.P. Hankare, S.R. Bamane, and K.M. Garadkar, J. Mater. Sci. Mater. Electron. 22, 821 (2011).CrossRefGoogle Scholar
  10. 10.
    K.O. Rocha and S.M. Zanetti, Sens. Actuators, B 157, 654 (2011).CrossRefGoogle Scholar
  11. 11.
    S. Martha, D.P. Das, N. Biswal, and K.M. Parida, J. Mater. Chem. 22, 10695 (2012).CrossRefGoogle Scholar
  12. 12.
    D.A.H. Hanaor and C.C. Sorrell, J. Mater. Sci. 46, 855 (2011).CrossRefGoogle Scholar
  13. 13.
    P.M. Faia, E.L. Jesus, and C.S. Louro, Sens. Actuators B 203, 340 (2014).CrossRefGoogle Scholar
  14. 14.
    K. Bhattacharyya, A.K. Patra, P.U. Sastry, and A.K. Tyagi, J. Alloys Compd. 482, 256 (2009).CrossRefGoogle Scholar
  15. 15.
    B. Grzybowska-Swierkosz, Appl. Catal. A 157, 263 (1997).CrossRefGoogle Scholar
  16. 16.
    C.B. Rodella, R.W.A. Franco, C.J. Magon, J.P. Donoso, and L.A.O. Nunes, J. Sol-Gel. Sci. Technol. 25, 75 (2002).CrossRefGoogle Scholar
  17. 17.
    V.A. Fonoberov and A.A. Balandin, Phys. Rev. B 70, 233205 (2004).CrossRefGoogle Scholar
  18. 18.
    G.R. Hearne, J. Zhao, A.M. Dawe, V. Pischedda, M. Maaza, M.K. Nieuwoudt, P. Kibasomba, O. Nemraoui, J.D. Comins, and M.J. Witcomb, Phys. Rev. B 70, 134102 (2004).CrossRefGoogle Scholar
  19. 19.
    S. Sahoo, A.K. Arora, and V. Sridharan, J. Phys. Chem. C 113, 16927 (2009).CrossRefGoogle Scholar
  20. 20.
    M. Horprathum, P. Eiamchai, P. Chindaudom, A. Pokaipisitb, and P. Limsuwan, Procedia Eng. 32, 676 (2012).CrossRefGoogle Scholar
  21. 21.
    M. Landmann, E. Rauls, and W.G. Schmidt, J. Phys. Condens. Matter 24, 195503 (2012).CrossRefGoogle Scholar
  22. 22.
    C.C. Yang and S. Li, J. Phys. Chem. B 112, 14193 (2008).CrossRefGoogle Scholar
  23. 23.
    F. Liu, X. Chen, Q. Xia, L. Tian, and X. Chen, RSC Adv. 5, 77423 (2015).CrossRefGoogle Scholar
  24. 24.
    D. Susanti, A.A.G.P. Diputra, L. Tananta, H. Purwaningsih, G.E. Kusuma, C. Wang, S. Shih, and Y. Huang, Front. Chem. Sci. Eng. 8, 179 (2014).CrossRefGoogle Scholar
  25. 25.
    Y. Chen, G. Yang, Z. Zhang, X. Yang, W. Hou, and Jun-Jie Zhu, Nanoscale 10, 2131 (2010).CrossRefGoogle Scholar
  26. 26.
    Y. Hu, Z. Li, Z. Zhang, and D. Meng, Appl. Phys. Lett. 94, 103107 (2009).CrossRefGoogle Scholar
  27. 27.
    H. Yin, K. Yu, H. Peng, Z. Zhang, R. Huang, J. Travas-Sejdic, and Z. Zhu, J. Mater. Chem. 22, 5013 (2012).CrossRefGoogle Scholar
  28. 28.
    J.Y. Kim, J.H. Yang, J.H. Lee, G. Choi, D.H. Park, M.R. Jo, S.J. Choi, and J.H. Choy, Chem. Asian J. 10, 2264 (2015).CrossRefGoogle Scholar
  29. 29.
    F.F.P. da Costa, E.S. Araújo, M.L.F. Nascimento, and H.P. de Oliveira, Int. J. Polym. Sci. 2015, 902365 (2015).CrossRefGoogle Scholar
  30. 30.
    S.H. Othman, S.A. Rashid, T.I.M. Ghazi, and N. Abdullah, J. Nanomater. 2012, 718214 (2012).CrossRefGoogle Scholar
  31. 31.
    Y. Guo, D. He, S. Xia, X. Xie, X. Gao, and Q. Zhang, J. Nanomater. 2012, 202794 (2012).CrossRefGoogle Scholar
  32. 32.
    S. Ghosh, S.S. Acharyya, M. Kumar, and R. Bal, Nanoscale 7, 15197 (2015).CrossRefGoogle Scholar
  33. 33.
    L.G. Teoha, J. Shiehb, W.H. Laia, I.M. Hunga, and M.H. Hon, J. Alloys Compd. 396, 251 (2005).CrossRefGoogle Scholar
  34. 34.
    I.M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand, and M. Figlaz, J. Solid-State Chem. 67, 235 (1987).CrossRefGoogle Scholar
  35. 35.
    L.H.M. Krings and W. Talen, Sol. Energy Mater. Sol. Cells 54, 27 (1998).CrossRefGoogle Scholar
  36. 36.
    V. Dimitrov, Y. Dimitriev, and A. Montenero, J. Non-Cryst. Solids 180, 51 (1994).CrossRefGoogle Scholar
  37. 37.
    T. Ivanova, A. Harizanova, and M. Surtchev, Mater. Lett. 55, 327 (2002).CrossRefGoogle Scholar
  38. 38.
    N. Kerkouria, M. Haddadb, M. Et-tabiroua, A. Chahinea, and L. Laânab, Physica B Condens. Matter 406, 3142 (2011).CrossRefGoogle Scholar
  39. 39.
    J. Ryczkowski, Catal. Today 68, 263 (2001).CrossRefGoogle Scholar
  40. 40.
    J.H. Anderson and G.A. Parks, J. Phys. Chem. 72, 3362 (1968).CrossRefGoogle Scholar
  41. 41.
    J.J. Fripiat, A. Jelli, G. Poncelet, and J. André, J. Phys. Chem. 69, 2185 (1965).CrossRefGoogle Scholar
  42. 42.
    W.M. Sears, Sens. Actuators B 67, 161 (2000).CrossRefGoogle Scholar
  43. 43.
    M.G. Baldwin and J.C. Morrow, J. Chem. Phys. 36, 1591 (1962).CrossRefGoogle Scholar
  44. 44.
    K.S. Cole and R.H. Cole, J. Chem. Phys. 9, 341 (1941).CrossRefGoogle Scholar
  45. 45.
    T. Morimoto, M. Nagao, and F. Tokuda, J. Phys. Chem. 73, 243 (1969).CrossRefGoogle Scholar
  46. 46.
    T. Morimoto and T. Iwaki, J. Chem. Soc. Faraday Trans. 1, 943 (1987).CrossRefGoogle Scholar
  47. 47.
    P.M. Faia and C.S. Furtado, Sens. Actuators B 181, 720 (2013).CrossRefGoogle Scholar
  48. 48.
    J. Holc, J. Slunčko, and M. Hrovat, Sens. Actuators, B 26–27, 99 (1995).CrossRefGoogle Scholar
  49. 49.
    M. Bayhan and N. Kavasoğlu, Sens. Actuators B 117, 261 (2006).CrossRefGoogle Scholar
  50. 50.
    G. Montesperelli, A. Pumo, E. Traversa, G. Gusmano, A. Bearzotti, A. Montenero, and G. Gnappi, Sens. Actuators B 25, 705 (1995).CrossRefGoogle Scholar
  51. 51.
    Vent-Axia, Ecotronic humidity sensors. http://www.vent-axia.com/product/ecotronic-humidity-sensor.html-1. Accessed 30 July 2017.
  52. 52.
    TDK Electronics Eurpe, Humidity Sensor CHS Series. http://pdf.directindustry.com/pdf/tdk-electronics-europe/humidity-sensor-chs-series/34778-654990.html. Accessed 30 July 2017.
  53. 53.
    C.Y. Lu, S.-P. Chang, S.J. Chang, T.J. Hsueh, C.L. Hsu, Y.Z. Chiou, and I.C. Chen, IEEE Sens. J. 9, 485 (2009).CrossRefGoogle Scholar
  54. 54.
    S. Niu, Y. Hu, X. Wen, Y. Zhou, F. Zhang, L. Lin, S. Wang, and Z.L. Wang, Adv. Mater. 25, 3701 (2013).CrossRefGoogle Scholar
  55. 55.
    T. Miyake and M. Rolandi, J. Phys. Condens. Matter 28, 023001 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Institute of Materials ScienceFederal University of Sao Francisco ValleyJuazeiroBrazil
  2. 2.Physics DepartmentTechnological Institute of AeronauticsSão José dos CamposBrazil
  3. 3.Electrical and Computers Engineering DepartmentUniversity of CoimbraCoimbraPortugal

Personalised recommendations