Advertisement

Journal of Electronic Materials

, Volume 47, Issue 8, pp 4421–4429 | Cite as

Robust Temperature Control of a Thermoelectric Cooler via \(\mu \)-Synthesis

Topical Collection: Electronic Materials for Renewable Energy Applications
  • 32 Downloads
Part of the following topical collections:
  1. 5th European Conference on Renewable Energy Systems

Abstract

In this work robust temperature control of a thermoelectric cooler (TEC) via \(\mu \)-synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing \(\mu \)-synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the \(\mu \)-synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.

Keywords

Robust control \(\mu \)-synthesis thermoelectric cooler TEC robust stability robust performance disturbance rejection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.J. DiSalvo, Science 285, 5428, 703 (1999).CrossRefGoogle Scholar
  2. 2.
    R.A. Taylor and G.L. Solbrekken, IEEE Trans. Compon. Packag. Technol. 31, 1, 23 (2008).CrossRefGoogle Scholar
  3. 3.
    P. Bansal and A. Martin, Int. J. Energy Res. 24, 2, 93 (2000).CrossRefGoogle Scholar
  4. 4.
    S.B. Riffat and X. Ma, Appl. Therm. Eng. 23, 8, 913 (2003).CrossRefGoogle Scholar
  5. 5.
    R. McCarty, J. Electron. Mater. 39, 9, 1842 (2010).CrossRefGoogle Scholar
  6. 6.
    F. Felgner, L. Exel, M. Nesarajah, and G. Frey, IEEE Trans. Ind. Electron. 61, 3, 1301 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Lineykin and S. Ben-Yaakov, IEEE Power Electron. Lett. 3, 2, 63 (2005).CrossRefGoogle Scholar
  8. 8.
    C. Li, D. Jiao, J. Jia, F. Guo, and J. Wang, IEEE Trans. Ind. Appl. 50, 6, 3995 (2014).CrossRefGoogle Scholar
  9. 9.
    A. Yusop, R. Mohamed, A. Ayob, and A. Mohamed, Model. Simul. Eng. 2014, 22 (2014).Google Scholar
  10. 10.
    H.L. Tsai and J.M. Lin, J. Electron. Mater. 39, 9, 2105 (2010).CrossRefGoogle Scholar
  11. 11.
    K. Kobbekaduwa and N. Subasinghe, Int. J. Energy Power Eng. 5, 3, 97 (2016).CrossRefGoogle Scholar
  12. 12.
    C.N. Kim and J. Kim, J. Electron. Mater. 44, 10, 3586 (2015).CrossRefGoogle Scholar
  13. 13.
    J. Chavez, J. Ortega, J. Salazar, A. Turo, and M.J. Garcia, in Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference, 2000. IMTC 2000. vol. 2 (IEEE, 2000), pp. 1019–1023Google Scholar
  14. 14.
    K.H. Lee, H. Kim, and O.J. Kim, J. Electron. Mater. 39, 9, 1566 (2010).CrossRefGoogle Scholar
  15. 15.
    D. Astrain, A. Martínez, J. Gorraiz, A. Rodríguez, and G. Pérez, J. Electron. Mater. 41, 6, 1081 (2012).CrossRefGoogle Scholar
  16. 16.
    B. Huang and C. Duang, Int. J. Refrig. 23, 3, 197 (2000).CrossRefGoogle Scholar
  17. 17.
    K. Sun, H. Wu, Y. Cai, and Y. Xing, J. Electron. Mater. 43, 6, 2287 (2014).CrossRefGoogle Scholar
  18. 18.
    S.J. Song and J.J. Wang, Applied Mechanics and Materials (Stafa-Zurich: Trans Tech Publ, 2012), vol. 130, pp. 1919–1924Google Scholar
  19. 19.
    M.J. Moran, H.N. Shapiro, D.D. Boettner, and M.B. Bailey, Fundamentals of engineering thermodynamics (New York: Wiley, 2010)Google Scholar
  20. 20.
    B. Kürkçü and C. Kasnakoğlu, Applied Mechanics and Materials (Stafa-Zurich: Trans Tech Publ, 2015), vol. 789, pp. 951–956Google Scholar
  21. 21.
    J.C. Doyle, B.A. Francis, and A.R. Tannenbaum, Feedback control theory (North Chelmsford: Courier Corporation, 2013)Google Scholar
  22. 22.
    S. Akyurek, G.S. Ozden, B. Kurkcu, U. Kaynak, C. Kasnakoglu, in 2015 9th International Conference on Electrical and Electronics Engineering (ELECO) (IEEE, 2015), pp. 790–795Google Scholar
  23. 23.
    Ş. Akyürek, B. Kürkçü, ü. Kaynak, and C. Kasnakoğlu, IFAC-PapersOnLine 49, 9, 117 (2016).CrossRefGoogle Scholar
  24. 24.
    O. Deveci and C. Kasnakolu, Int. J. Hydrog. Energy 42, 28, 18064 (2017).CrossRefGoogle Scholar
  25. 25.
    F.C. Wang and C.C. Ko, Int. J. Hydrog. Energy 35, 19, 10437 (2010).CrossRefGoogle Scholar
  26. 26.
    K. Zhou and J.C. Doyle, Essentials of Robust Control (Upper Saddle River: Prentice hall, 1998), vol. 104.Google Scholar
  27. 27.
    Z. Chen, B. Yao, and Q. Wang, IEEE/ASME Trans. Mechatron. 20, 3, 1482 (2015).CrossRefGoogle Scholar
  28. 28.
    S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design (New York: Wiley, 2007)Google Scholar
  29. 29.
    M. Morari and E. Zafiriou, Robust Process Control (Englewood Cliffs: Prentice hall, 1989).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.TOBB University of Economics and TechnologyAnkaraTurkey
  2. 2.ASELSAN Inc.AnkaraTurkey

Personalised recommendations