Journal of Electronic Materials

, Volume 47, Issue 5, pp 2667–2672 | Cite as

Enhancement of Giant Magneto-Impedance in Series Co-Rich Microwires for Low-Field Sensing Applications

  • S. D. Jiang
  • T. Eggers
  • O. Thiabgoh
  • D. W. Xing
  • W. B. Fang
  • J. F. Sun
  • H. Srikanth
  • M. H. Phan


Two soft ferromagnetic Co68.25Fe4.25Si12.25B15.25 microwires with the same diameter of 50 ± 1 μm but different fabrication processes were placed in series and in parallel circuit configurations to investigate their giant magneto-impedance (GMI) responses in a frequency range of 1–100 MHz for low-field sensing applications. We show that, while the low-field GMI response is significantly reduced in the parallel configuration, it is greatly enhanced in the series connection. These results suggest that a highly sensitive GMI sensor can be designed by arranging multi-wires in a saw-shaped fashion to optimize the sensing area, and soldered together in series connection to maintain the excellent magnetic field sensitivity.


Magnetic microwire magneto-impedance circuit design magnetic sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 51371067 and 51671071. S.D.J. acknowledges support from the China Scholarship Council (CSC) fellowship. Research at USF was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-07ER46438 (GMI study).


  1. 1.
    D. Makarov, M. Melzer, D. Karnaushenko, and O.G. Schmidt, Appl. Phys. Rev. 3, 011101 (2016).CrossRefGoogle Scholar
  2. 2.
    P. Colosimo, A. Chen, J. Devkota, H. Srikanth, and M.H. Phan, Sensor. Actuat. A Phys. 210, 28 (2014).CrossRefGoogle Scholar
  3. 3.
    T. Wang, Y. Zhou, C. Lei, J. Luo, S. Xie, and H. Pu, Biosens. Bioelectron. 90, 418 (2017).CrossRefGoogle Scholar
  4. 4.
    D. Zhang, Z. Pan, H. Zhou, and W. Zhang, Sensor. Actuat. A Phys. 249, 225 (2016).CrossRefGoogle Scholar
  5. 5.
    T. Uchiyama, K. Mohri, and S. Nakayama, IEEE Trans. Magn. 47, 3070 (2011).CrossRefGoogle Scholar
  6. 6.
    A. Zhukov, Adv. Funct. Mater. 16, 677 (2006).CrossRefGoogle Scholar
  7. 7.
    M. Ipatov, V. Zhukova, A. Zhukov, and J. Gonzalez, Sci. Rep. 6, 36180 (2016).CrossRefGoogle Scholar
  8. 8.
    S. Nakayama and T. Uchiyama, Sci. Rep. 5, 8837 (2015).CrossRefGoogle Scholar
  9. 9.
    O. Thiabgoh, T. Eggers, and M.H. Phan, Sensor. Actuat. A Phys. 265, 120 (2017).CrossRefGoogle Scholar
  10. 10.
    A. Talaat, J. Alonso, V. Zhukova, E. Garaio, J.A. García, H. Srikanth, M.H. Phan, and A. Zhukov, Sci. Rep. 6, 39300 (2016).CrossRefGoogle Scholar
  11. 11.
    F.X. Qin, N. Pankratov, H.X. Peng, M.H. Phan, L.V. Panina, M. Ipatov, V. Zhukova, A. Zhukov, and J. Gonzalez, J. Appl. Phys. 108, 044510 (2010).CrossRefGoogle Scholar
  12. 12.
    M.H. Phan and H.X. Peng, Prog. Mater Sci. 53, 323 (2008).CrossRefGoogle Scholar
  13. 13.
    F.X. Qin, H.X. Peng, V.V. Popov, and M.H. Phan, Solid State Commun. 151, 294 (2011).Google Scholar
  14. 14.
    F.X. Qin, V.V. Popov, and H.X. Peng, J. Alloy. Compd. 509, 9508 (2011).CrossRefGoogle Scholar
  15. 15.
    L.V. Panina and K. Mohri, Appl. Phys. Lett. 65, 1189 (1994).CrossRefGoogle Scholar
  16. 16.
    R.S. Beach and A.E. Berkowitz, Appl. Phys. Lett. 64, 3652 (1994).CrossRefGoogle Scholar
  17. 17.
    L.D. Landau and E.M. Lifshits, Electrodynamics of Continuous media, 2nd ed. (Oxford: Pergamon, 1984), pp. 208–212.Google Scholar
  18. 18.
    V. Zhukova, M. Ipatov, A. Talaat, J.M. Blanco, Arcady Zhukov, in Amorphous and nanocrystalline glass-coated wires: optimization of soft magnetic properties, ed. by A. Zhukov (Springer, Berlin, 2017), p. 6.Google Scholar
  19. 19.
    H. Wang, F.X. Qin, H.X. Peng, J.F. Sun, in High performance soft magnetic materials, ed. By A. Zhukov (Springer, Berlin, 2017), p. 58.Google Scholar
  20. 20.
    S. Jiang, D. Xing, J. Liu, H. Shen, D. Chen, W. Fang, and J. Sun, J. Alloy. Compd. 644, 180 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Devkota, A. Ruiz, P. Mukherjee, H. Srikanth, M.H. Phan, A. Zhukov, and V.S. Larin, J. Alloy. Compd. 549, 295 (2013).CrossRefGoogle Scholar
  22. 22.
    D. Estévez, A. He, C. Chang, Q. Man, X. Wang, and R.W. Li, J. Magn. Magn. Mater. 393, 278 (2015).CrossRefGoogle Scholar
  23. 23.
    Z. Yang, Y. Liu, C. Lei, X.C. Sun, and Y. Zhou, Microchim. Acta 182, 2411 (2015).CrossRefGoogle Scholar
  24. 24.
    S.D. Jiang, D.W. Xing, W.D. Fei, J.S. Liu, H.X. Shen, W.B. Fang, and J.F. Sun, RSC Adv. 5, 103609 (2015).CrossRefGoogle Scholar
  25. 25.
    S.D. Jiang, T. Eggers, O. Thiabgoh, D.W. Xing, W.D. Fei, H.X. Shen, J.S. Liu, J.R. Zhang, W.B. Fang, J.F. Sun, H. Srikanth, and M.H. Phan, Sci. Rep. 7, 46253 (2017).CrossRefGoogle Scholar
  26. 26.
    R. Valezuela, J. Magn. Magn. Mater. 249, 300 (2002).CrossRefGoogle Scholar
  27. 27.
    J.J. Beato-López, C.A. de la Cruz Blas, A. Mitra, and C. Gómez-Polo, Sensor. Actuat. A-Phys. 242, 73 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.Department of PhysicsUniversity of South FloridaTampaUSA
  3. 3.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China

Personalised recommendations