Skip to main content
Log in

The Evolution of IMCs in Single Crystal Sn3.0Ag0.5Cu and Sn3.0Ag3.0Bi3.0In BGA Solder Joints with Au/Ni/Cu Pads Under Current Stressing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The growth behavior of intermetallic compound (IMC) in single crystal Sn3.0Ag0.5Cu (SAC305) and Sn3.0Ag3.0Bi3.0In (SABI333) ball grid array solder joints with Au/Ni/Cu pads under 104 A/cm2 current stressing was investigated. Characterization by scanning electron microscopy and electron backscattered diffraction mapping were utilized to identify the microstructure and crystal orientation of solder joints. The AuSn4 IMC particles in the SAC305 solder matrix were formed along the electron flow direction and c-axis direction of Sn. On the other hand, it was observed that the Au(Sn0.83, In0.17)4 IMC particles generated in SABI333 solder matrix decomposed from needle-like morphology into small pieces of Au(Sn0.23, In0.77)2 during current stressing. This phenomenon depends on the different diffusion rate and opposite migration direction of Sn and In atoms, which have different driving forces. Moreover, the results showed that the growth behavior of IMC particles in SAC305 solder joints was significantly dependent on the c-axis direction of Sn, while that of IMCs in SABI333 was almost maintained without polarization effect. This study indicated that SABI333 solder joints under EM service could exhibit a better performance than that of SAC305 solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Abd El-Rehim, H.Y. Zahran, and S. AlFaify, J. Mater. Eng. Perform. 27, 344 (2018).

    Article  Google Scholar 

  2. W.Q. Xing, X.Y. Yu, H. Li, L. Ma, W. Zuo, P. Dong, W.X. Wang, and M. Ding, J Alloys Compd. 695, 574 (2017).

    Article  Google Scholar 

  3. H.-Y. Hsiao, Y.-S. Huang, and C. Chen, in 2011 IEEE 13th Electronics Packaging Technology Conference (2011), p. 474.

  4. A.F. Abd El-Rehim and H.Y. Zahran, J. Alloys Compd. 695, 3666 (2017).

    Article  Google Scholar 

  5. F. Guo, J. Mater. Sci.: Mater. Electron. 18, 129 (2007).

    Google Scholar 

  6. W.R. Osorio, D.R. Leiva, L.C. Peixoto, L.R. Garcia, and A. Garcia, J. Alloys Compd. 562, 194 (2013).

    Article  Google Scholar 

  7. M. He, N. De Leon, and V.L. Acoff, Solder. Surf. Mt. Technol. 22, 4 (2010).

    Article  Google Scholar 

  8. Y. Tian, J. Han, L.M. Ma, and F. Guo, Microelectron. Reliab. 80, 7 (2018).

    Article  Google Scholar 

  9. S.K. Kang, M.G. Cho, P. Lauro, and D.Y. Shih, J. Mater. Res. 22, 557 (2007).

    Article  Google Scholar 

  10. A.U. Telang, T.R. Bieler, J.P. Lucas, K.N. Subramanian, L.R. Lehman, Y. Xing, and E.J. Cotts, J. Electron. Mater. 33, 1412 (2004).

    Article  Google Scholar 

  11. T.L. Yang, J.J. Yu, C.C. Li, Y.F. Lin, and C.R. Kao, J. Alloys Compd. 627, 281 (2015).

    Article  Google Scholar 

  12. B.F. Dyson, J. Appl. Phys. 37, 2375 (1966).

    Article  Google Scholar 

  13. B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).

    Article  Google Scholar 

  14. D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 1469 (1984).

    Article  Google Scholar 

  15. Y. Wang, J. Han, L.M. Ma, Y. Zuo, and F. Guo, J. Electron. Mater. 45, 6095 (2016).

    Article  Google Scholar 

  16. M.L. Huang, J.F. Zhao, Z.J. Zhang, and N. Zhao, Acta Mater. 100, 98 (2015).

    Article  Google Scholar 

  17. K.N. Tu, Microelectron. Reliab. 51, 517 (2011).

    Article  Google Scholar 

  18. L. Ma, X. Guangchen, F. Jia Sun, F. Guo, and X. Wang, J. Mater. Sci. 46, 4896 (2011).

    Article  Google Scholar 

  19. T.C. Huang, T.L. Yang, J.H. Ke, C.H. Hsueh, and C.R. Kao, Scr. Mater. 80, 37 (2014).

    Article  Google Scholar 

  20. C.E. Ho, C.H. Yang, and L.H. Hsu, Surf. Coat. Technol. 259, 257 (2014).

    Article  Google Scholar 

  21. Y. Tian, J. Han, and F. Guo, J. Mater. Sci.: Mater. Electron. 28, 10785 (2017).

    Google Scholar 

  22. Y. Kim, S. Nagao, T. Sugahara, K. Suganuma, M. Ueshima, H.J. Albrecht, K. Wilke, and J. Strogies, J. Electron. Mater. 43, 4428 (2014).

    Article  Google Scholar 

  23. A. Yamaguchi, Y. Yamashita, A. Furusawa, K. Nishida, T. Hojo, Y. Sogo, A. Miwa, A. Hirose, and K.F. Kobayashi, Mater. Trans. 45, 1282 (2004).

    Article  Google Scholar 

  24. K.-S. Kim, T. Imanishi, K. Suganuma, M. Ueshima, and R. Kato, Microelectron. Reliab. 47, 1113 (2007).

    Article  Google Scholar 

  25. K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, J. Mater. Res. 13, 2859 (1998).

    Article  Google Scholar 

  26. M.S. Yeh, Metall. Mater. Trans. A 34, 361 (2003).

    Article  Google Scholar 

  27. K. Yamanaka, Y. Tsukada, and K. Suganuma, J. Alloys Compd. 437, 186 (2007).

    Article  Google Scholar 

  28. A.T. Wu, M.H. Chen, and C.H. Huang, J. Alloys Compd. 476, 436 (2009).

    Article  Google Scholar 

  29. A.T. Wu and K.H. Sun, J. Electron. Mater. 38, 2780 (2009).

    Article  Google Scholar 

  30. J. Chen, J. Shen, W.D. Xie, and H. Liu, J. Mater. Sci.: Mater. Electron. 22, 1703 (2011).

    Google Scholar 

  31. C.C. Jain, S.S. Wang, K.W. Huang, and T.H. Chuang, J. Mater. Eng. Perform. 18, 211 (2009).

    Article  Google Scholar 

  32. H.M. Wu, F.C. Wu, and T.H. Chuang, J. Electron. Mater. 34, 1385 (2005).

    Article  Google Scholar 

  33. Y. Li, F.S. Wu, and Y.C. Chan, J. Mater. Sci.: Mater. Electron. 26, 8522 (2015).

    Google Scholar 

  34. S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shih, and H.M. Lee, J. Electron. Mater. 38, 2461 (2009).

    Article  Google Scholar 

  35. C.E. Ho, C.H. Yang, P.T. Lee, and C.T. Chen, Scr. Mater. 114, 79 (2016).

    Article  Google Scholar 

  36. C.F. Lin, S.H. Lee, and C.M. Chen, Metall. Mater. Trans. A 43a, 2571 (2012).

    Article  Google Scholar 

  37. P.S. Ho and T. Kwok, Rep. Prog. Phys. 52, 301 (1989).

    Article  Google Scholar 

  38. H. Conrad, Mat Sci Eng a-Struct. 287, 227 (2000).

    Article  Google Scholar 

  39. A. Sawatzky, J. Appl. Phys. 29, 1303 (1958).

    Article  Google Scholar 

  40. K.G. Davis, Metall. Trans. 5, 303 (1974).

    Article  Google Scholar 

  41. E.I. Kharkov, S.Y. Yakushevskiy, G.I. Onopriyenko, and R.F. Alimova, Izv. Akad. Nauk SSSR Met. 1, 56 (1974).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of this work from the National Natural Science Foundation of China (Grant Numbers 51425101 and 51621003), the Beijing Natural Science Foundation (Grant Numbers 2162005, 2172009, and 2172006), and the Science and Technology Nova Plan of Beijing (Grant Number Z161100004916155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Wang, Y., Guo, F. et al. The Evolution of IMCs in Single Crystal Sn3.0Ag0.5Cu and Sn3.0Ag3.0Bi3.0In BGA Solder Joints with Au/Ni/Cu Pads Under Current Stressing. J. Electron. Mater. 48, 2770–2779 (2019). https://doi.org/10.1007/s11664-018-06907-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06907-8

Keywords

Navigation