Skip to main content
Log in

Structure and Magnetic Properties of Nanocrystalline MnAl-C Prepared by Solid-State Reaction and High-Pressure Compaction

  • 5th International Conference of Asian Union of Magnetics Societies
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The ferromagnetic MnAl-C powders were prepared by using a one-step solid-state reaction method starting from Mn micro-/nano-particles and Al/C micropowders. The bulk MnAl-C with enhanced coercivity was prepared by high-pressure compaction of these MnAl-C powders. The grain size of the τ-phase was significantly reduced during high-pressure compaction, which may also result in a decomposition of the τ-MnAl. Carbon element stabilizes the τ-phase under both ambient and high pressures. The annealing temperature and time intervals are crucial for the preparation of high purity τ-phase samples. The MnAl-C with smaller particle size were produced from Mn nanoparticles. In comparison with the samples prepared from Mn micropowders, the product prepared from Mn nanoparticles shows lower purity, owing to the surface oxidation of the precursor nanoparticles. After high pressure compaction, the coercivities of the bulk MnAl and MnAl-C were increased from 0.05 T and 0.08 T to 0.39 T and 0.22 T, respectively. The room temperature magnetization of the MnAl-C sample at 4 T reached up to 95 Am2/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Zeng, I. Baker, J.B. Cui, and Z.C. Yan, J. Magn. Magn. Mater. 308, 214 (2007). https://doi.org/10.1016/j.jmmm.2006.05.032.

    Article  Google Scholar 

  2. J.M.D. Coey, Scr. Mater. 67, 524 (2012). https://doi.org/10.1016/j.scriptamat.2012.04.036.

    Article  Google Scholar 

  3. J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian, and D. Sellmyer, Acta Mater. 158, 118 (2018). https://doi.org/10.1016/j.actamat.2018.07.049.

    Article  Google Scholar 

  4. G. Hindrichs, Z. Anorg. Chem. 59, 414 (1908). https://doi.org/10.1002/zaac.19080590136.

    Article  Google Scholar 

  5. H. Kono, J. Phys. Soc. Jpn. 13, 1444 (1958). https://doi.org/10.1143/JPSJ.13.1444.

    Article  Google Scholar 

  6. A.J.J. Koch, P. Hokkeling, M.G.V.D. Steeg, and K.J.D.E. Vos, J. Appl. Phys. 31, 75S (1960). https://doi.org/10.1063/1.1984610.

    Article  Google Scholar 

  7. R.H. Willens, IEEE Trans. Magn. 16, 5 (1980). https://doi.org/10.1109/TMAG.1980.1060667.

    Article  Google Scholar 

  8. J.H. Huang and P.C. Kuo, Mater. Sci. Eng. B 20, 292 (1993). https://doi.org/10.1016/0956-716X(93)90550-C.

    Article  Google Scholar 

  9. Y. Sakka, M. Nakamura, and K. Hoshimoto, J. Mater. Sci. 24, 4331 (1989). https://doi.org/10.1007/BF00544507.

    Article  Google Scholar 

  10. J. Thielsch, F. Bittner, and T.G. Woodcock, J. Magn. Magn. Mater. 426, 25 (2017). https://doi.org/10.1016/j.jmmm.2016.11.045.

    Article  Google Scholar 

  11. P.Z. Si, H.D. Qian, C.J. Choi, J.H. Park, and H.L. Ge, J. Magn. Magn. Mater. 451, 540 (2018). https://doi.org/10.1016/j.jmmm.2017.11.094.

    Article  Google Scholar 

  12. R. Madugundo, O. Koylu-Alkan, and G.C. Hadjipanayis, AIP Adv. 6, 056009 (2016). https://doi.org/10.1063/1.4943242.

    Article  Google Scholar 

  13. W. Lu, J.C. Niu, T.L. Wang, K.D. Xia, Z. Xiang, Y.M. Song, H. Zhang, S. Yoshimura, and H. Saito, J. Alloys Compd. 675, 163 (2016). https://doi.org/10.1016/j.jallcom.2016.03.098.

    Article  Google Scholar 

  14. T. Ohtani, N. Kato, S. Kojima, Y. Sakamoto, I. Konno, M. Tsukahara, and T. Kubo, IEEE Trans. Mag. 13, 1328 (1977). https://doi.org/10.1109/TMAG.1977.1059574.

    Article  Google Scholar 

  15. P.Z. Si, E. Brück, Z.D. Zhang, O. Tegus, W.S. Zhang, K.H.J. Buschow, and J.C.P. Klaasse, Mater. Res. Bull. 40, 29 (2005). https://doi.org/10.1016/j.materresbull.2004.09.010.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Future Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2016M3D1A1027835).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyung Mox Cho or Chul-Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, HD., Si, PZ., Park, J. et al. Structure and Magnetic Properties of Nanocrystalline MnAl-C Prepared by Solid-State Reaction and High-Pressure Compaction. J. Electron. Mater. 48, 1395–1399 (2019). https://doi.org/10.1007/s11664-018-06848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06848-2

Keywords

Navigation