Journal of Electronic Materials

, Volume 47, Issue 4, pp 2298–2305 | Cite as

Improved Magnetic, Dielectric and Optical Properties of PbTi1−xFe x O3 (0 ≤ x ≤ 0.60) System

  • M. Irfan Ullah
  • S. K. Hasanain
  • Shahzad Hussain
  • M. Usman


In this study, we describe an improvement of room temperature ferromagnetism achieved in a PbTi1xFe x O3 (0 ≤ x ≤ 0.60) system and discuss a correlation between structural, magnetic, dielectric and optical properties. Pure PbTiO3 , which crystallizes in a tetragonal structure, evolved towards a cubic structure with increases in Fe content. Magnetic measurements showed that all Fe substituted samples are ferromagnetic at room temperature and maximum magnetization at 7 kOe increases with increases in Fe content. The origin and improvement of ferromagnetism is ascribed to the F-center exchange mechanism. The temperature dependence of dielectric behavior showed typical ferroelectric behavior, but ferroelectric transition temperature remained above our maximum measuring temperature. The improvement in dielectric properties of the PbFe x Ti1xO3 system may be attributed to increases of resistivity and activation energy. The decrease in band gap with increase in Fe substitution is ascribed to the decrease in c/a ratio, indicating that the optical band gap is affected by the degree of structural disorder in the PbFe x Ti1xO3 system.


Structural properties magnetic properties dielectric properties optical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Conflict of interest

The authors of the manuscript certify that we have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Supplementary material

11664_2017_6054_MOESM1_ESM.pdf (99 kb)
Supplementary material 1 (PDF 98 kb)


  1. 1.
    M.M. Vopson, Crit. Rev. Solid State Mater. Sci. 40, 223 (2015).CrossRefGoogle Scholar
  2. 2.
    A.N. Spaldin and M. Fiebig, Science 309, 391 (2005).CrossRefGoogle Scholar
  3. 3.
    N.A. Hill, J. Phys. Chem. B 104, 6694 (2000).CrossRefGoogle Scholar
  4. 4.
    S. Hussain, S.K. Hasanain, G.H. Jaffari, and S. Ismat Shah, Curr. Appl. Phys. 15, 194 (2015).CrossRefGoogle Scholar
  5. 5.
    R. Ramesh and N.A. Spaldin, Nat. Mater. 6, 21 (2007).CrossRefGoogle Scholar
  6. 6.
    S. Hussain, S.K. Hasanain, G.H. Jaffari, S. Faridi, F. Rehman, T. Ali Abbas, and S.I. Shah, J. Am. Ceram. Soc. 96, 3141 (2013).Google Scholar
  7. 7.
    S. Hussain, S.K. Hasanain, G.H. Jaffari, N.Z. Ali, M. Siddique, and S.I. Shah, J. Alloys Compd. 622, 8 (2015).CrossRefGoogle Scholar
  8. 8.
    H. Meštrić, R.A. Eichel, T. Kloss, K.P. Dinse, S. Laubach, S. Laubach, P.C. Schmidt, K.A. Schönau, M. Knapp, and H. Ehrenberg, Phys. Rev. B 71, 134109 (2005).CrossRefGoogle Scholar
  9. 9.
    K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, J. Appl. Phys. 60, 361 (1986).CrossRefGoogle Scholar
  10. 10.
    T. Ohno, D. Suzuki, K. Ishikawa, and H. Suzuki, Adv. Powder Technol. 18, 579 (2007).CrossRefGoogle Scholar
  11. 11.
    V.R. Palkar and S.K. Malik, Solid State Commun. 134, 783 (2005).CrossRefGoogle Scholar
  12. 12.
    Z. Ren, G. Xu, X. Wei, Y. Liu, X. Hou, P. Du, W. Weng, G. Shen, and G. Han, Appl. Phys. Lett. 91, 063106 (2007).CrossRefGoogle Scholar
  13. 13.
    K. Verma, R. Kotnala, and N. Negi, Appl. Phys. Lett. 92, 152902 (2008).CrossRefGoogle Scholar
  14. 14.
    K. Verma, R. Kotnala, N. Thakur, V. Rangra, and N. Negi, J. Appl. Phys. 104, 093908 (2008).CrossRefGoogle Scholar
  15. 15.
    H. Meštrić, R.-A. Eichel, T. Kloss, K.-P. Dinse, S. Laubach, S. Laubach, P.C. Schmidt, K.A. Schönau, M. Knapp, and H. Ehrenberg, Phys. Rev. B 71, 134109 (2005).CrossRefGoogle Scholar
  16. 16.
    O. Madelung, U. Rössler, and M. Schulz, Ternary Compounds, Organic Semiconductors (Berlin: Springer, 2000), pp. 1–7. Scholar
  17. 17.
    M.M. Kumar, Phys. Status Solidi A Appl. Res. 177, 583 (2000).CrossRefGoogle Scholar
  18. 18.
    H. Igarashi and K. Okazaki, J. Am. Ceram. Soc. 60, 51 (1977).CrossRefGoogle Scholar
  19. 19.
    S. Hussain, F.A. Khan, N.Z. Ali, S.K. Hasanain, M. Siddique, M. Rafique, and T.A. Abbas, J. Alloys Compd. 701, 301 (2017).CrossRefGoogle Scholar
  20. 20.
    V.R. Palkar and S.K. Malik, Solid State Commun. 134, 783 (2005).CrossRefGoogle Scholar
  21. 21.
    J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004).CrossRefGoogle Scholar
  22. 22.
    J. Lu, A. Guenther, F. Schrettle, F. Mayr, S. Krohns, P. Lunkenheimer, A. Pimenov, V.D. Travkin, A.A. Mukhin, and A. Loidl, Eur. Phys. J. B 75, 451 (2010).CrossRefGoogle Scholar
  23. 23.
    D.J. Keeble, S. Singh, R.A. Mackie, M. Morozov, S. McGuire, and D. Damjanovic, Phys. Rev. B 76, 144109 (2007).CrossRefGoogle Scholar
  24. 24.
    G. Kortüm and J.E. Lohr, Reflectance Spectroscopy: Principles, Methods, Applications (New York: Springer, 1969).CrossRefGoogle Scholar
  25. 25.
    E. Longo, E. Orhan, F.M. Pontes, C.D. Pinheiro, E.R. Leite, J.A. Varela, P.S. Pizani, T.M. Boschi, J.F. Lanciotti, A. Beltrán, and J. Andrés, Phys. Rev. B 69, 125115 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • M. Irfan Ullah
    • 1
  • S. K. Hasanain
    • 1
  • Shahzad Hussain
    • 2
  • M. Usman
    • 1
  1. 1.Department of PhysicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of PhysicsCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations