Skip to main content
Log in

Effects of Additives on Electrochemical Growth of Cu Film on Co/SiO2/Si Substrate by Alternating Underpotential Deposition of Pb and Surface-Limited Redox Replacement by Cu

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of additives to an acidic electrolyte for electrochemical deposition of copper film to prevent corrosion of the Co/SiO2/Si substrate have been investigated. A sacrificial Pb layer was formed by underpotential deposition (UPD), then a Cu layer was prepared using surface-limited redox replacement (SLRR) to exchange the UPD-Pb layer in an acidic copper electrolyte with trisodium citrate, sodium perchlorate, and ethylenediamine as additives. The additives significantly affected the replacement of UPD-Pb by Cu and prevented galvanic corrosion of the Co/SiO2/Si substrate in the acidic Cu electrolyte. The results showed that both sodium perchlorate and ethylenediamine reduced the corrosion of the Co substrate and resulted in Cu film with low electrical resistivity. However, residual Pb was present in the Cu film when using trisodium citrate, as the citrate ions slowed copper displacement. The proposed sequential UPD-Pb and SLRR-Cu growth method may enable electrochemical deposition for fabrication of Cu interconnects on Co substrate from acidic Cu electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. George, Chem. Rev. 110, 111 (2010).

    Article  Google Scholar 

  2. Y. Shacham-Diamand, V. Dubin, and M. Angyal, Thin Solid Films 262, 93 (1995).

    Article  Google Scholar 

  3. M. Paunovic, P.J. Bailey, R.G. Schand, and D.A. Smith, J. Electrochem. Soc. 141, 1843 (1994).

    Article  Google Scholar 

  4. S.T. Chen, Y.Y. Liu, and G.S. Chen, Appl. Surf. Sci. 354, 144 (2015).

    Article  Google Scholar 

  5. H.B. Bhandari, J. Yang, H. Kim, Y. Lin, R.G. Gordon, Q.M. Wang, J.S.M. Lehn, H. Li, and D. Shenai, ECS J. Solid State Sci. Technol. 1, N79 (2012).

    Article  Google Scholar 

  6. Y.S. Diamand, B. Israel, and Y. Sverdlov, Microelectron. Eng. 55, 313 (2001).

    Article  Google Scholar 

  7. A. Kohn, M. Eizenberg, Y.S. Diamand, B. Israel, and Y. Sverdlov, Microelectron. Eng. 55, 297 (2001).

    Article  Google Scholar 

  8. T.K. Tsai, S.S. Wu, W.L. Liu, S.H. Hsieh, and W.J. Chen, J. Electron. Mater. 36, 1408 (2007).

    Article  Google Scholar 

  9. T. Osaka, H. Aramaki, M. Yoshino, K. Ueno, I. Matsuda, and Y.S. Diamand, J. Electrochem. Soc. 156, H707 (2009).

    Article  Google Scholar 

  10. T.K. Tsai, S.S. Wu, C.S. Hsu, and J.S. Fang, Thin Solid Films 519, 4958 (2011).

    Article  Google Scholar 

  11. H. Einati, V. Bogush, Y. Sverdlov, Y. Rosenberg, and Y.S. Diamand, Microelectron. Eng. 82, 623 (2005).

    Article  Google Scholar 

  12. W.Z. Xu, J.X. Wang, H.S. Lu, X. Zeng, J.B. Xu, and X.P. Qu, in IEEE ICSICT Conference Proceeding (2012), pp. 1–3.

  13. J. Gong, I. Zana, and G. Zangari, J. Mater. Sci. Lett. 20, 1921 (2001).

    Article  Google Scholar 

  14. P. Wei, O.E. Jileman, M.R. Bateni, X. Deng, and A. Petric, Surf. Coat. Technol. 201, 7739 (2007).

    Article  Google Scholar 

  15. H.S. Lu, J.X. Wang, X. Zeng, F. Chen, X.M. Zhang, W.J. Zhang, and X.P. Qu, Electrochem. Solid-State Lett. 15, H97 (2012).

    Article  Google Scholar 

  16. V. Brusic, G.S. Frankel, A.G. Schrott, T.A. Petersen, and B.M. Rush, J. Electrochem. Soc. 140, 2507 (1993).

    Article  Google Scholar 

  17. B.C. Peethala, H.P. Amanapu, U.R.K. Lagudu, and S.V. Babu, J. Electrochem. Soc. 159, H582 (2012).

    Article  Google Scholar 

  18. The International Technology Roadmap for Semiconductors 2.0, 2015 edition, Interconnect, http://www.itrs2.net/itrs-reports.html.

  19. J.S. Fang, Y.S. Liu, and T.S. Chin, Thin Solid Films 480, 1 (2015).

    Article  Google Scholar 

  20. J.S. Fang, S.L. Sun, Y.L. Cheng, G.S. Chen, and T.S. Chin, Appl. Surf. Sci. 364, 358 (2016).

    Article  Google Scholar 

  21. T.R.I. Cataldi and G.E. De Benedetto, J. Electroanal. Chem. 458, 149 (1998).

    Article  Google Scholar 

  22. C. Thambidurai, Y.G. Kim, N. Jayaraju, V. Venkatasamy, and J.L. Stickney, J. Elecrochem. Soc. 156, D261 (2009).

    Article  Google Scholar 

  23. J.Y. Kim, Y.G. Kim, and J.L. Stickney, J. Electroanal. Chem. 621, 205 (2008).

    Article  Google Scholar 

  24. A. Radisic, Y. Cao, P. Taephaisitphongse, A.C. West, and P.C. Searson, J. Electrochem. Soc. 150, C362 (2003).

    Article  Google Scholar 

  25. J.S. Fang, J.H. Chen, G.S. Chen, Y.L. Cheng, and T.S. Chin, Electrochim. Acta 206, 45 (2016).

    Article  Google Scholar 

  26. R. Vasilic, N. Vasiljevic, and N. Dimitrov, J. Electroanal. Chem. 580, 203 (2005).

    Article  Google Scholar 

  27. G.M. Brisard, E. Zenati, H.A. Gasteiger, N.M. Markovic, and P.N. Ross, Langmuir 11, 2221 (1995).

    Article  Google Scholar 

  28. Y.Z. Hamada, R. Cox, and H. Hamada, J. Basic Appl. Sci. 11, 583 (2015).

    Article  Google Scholar 

  29. J.L. Stickney, C. Thambidurai, and Y.G. Kim, Electrochim. Acta 53, 6157 (2008).

    Article  Google Scholar 

  30. A. Eftekhari, Microelectron. Eng. 69, 17 (2003).

    Article  Google Scholar 

  31. L. Graham, C. Steinbrüchel, and D.J. Duquette, J. Electrochem. Soc. 149, C390 (2002).

    Article  Google Scholar 

  32. M.O. Finot, G.D. Braybrook, and M.T. McDermott, J. Electroanal. Chem. 466, 234 (1999).

    Article  Google Scholar 

  33. B. Scharifker and G. Hills, Electrochim. Acta 28, 879 (1983).

    Article  Google Scholar 

  34. X.D. Gao, X.M. Li, and W.D. Yu, J. Solid State Chem. 178, 1139 (2005).

    Article  Google Scholar 

  35. W.Z. Xu, J.B. Xu, H.S. Lu, J.X. Wang, Z.J. Hu, and X.P. Qu, J. Electrochem. Soc. 160, D3075 (2013).

    Article  Google Scholar 

  36. B.J. Hwang, R. Santhanam, and Y.L. Lin, Electrochim. Acta 46, 2843 (2001).

    Article  Google Scholar 

  37. Y.G. Kim, J.Y. Kim, D. Vairavapandian, and J.L. Stickney, J. Phys. Chem. B 110, 17998 (2006).

    Article  Google Scholar 

  38. C. Thambidurai, D.K. Gegregziabiher, X. Liang, Q. Zhang, V. Ivanova, P.H. Haumesser, and J.L. Stickney, J. Electrochem. Soc. 157, D466 (2010).

    Article  Google Scholar 

  39. L.B. Sheridan, D.K. Gebregziabiher, J.L. Stickney, and D.B. Robinson, Langmuir 29, 1592 (2013).

    Article  Google Scholar 

  40. S. Kim and D.J. Duquette, J. Electrochem. Soc. 153, C417 (2006).

    Article  Google Scholar 

  41. S. Aksu and F.M. Doyle, J. Electrochem. Soc. 149, B340 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support provided by the Ministry of Science and Technology, Taiwan under Grant 104-2221-E-150-005-MY2 and experimental support provided by the Common Laboratory for Micro/Nano Science and Technology of the National Formosa University for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J.S., Lin, L.Y., Wu, C.L. et al. Effects of Additives on Electrochemical Growth of Cu Film on Co/SiO2/Si Substrate by Alternating Underpotential Deposition of Pb and Surface-Limited Redox Replacement by Cu. J. Electron. Mater. 46, 6677–6684 (2017). https://doi.org/10.1007/s11664-017-5692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5692-5

Keywords

Navigation