Skip to main content
Log in

Thermoelectric Potential of Polymer-Scaffolded Ionic Liquid Membranes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Organic thin films have been viewed as potential thermoelectric (TE) materials, given their ease of fabrication, flexibility, cost effectiveness, and low thermal conductivity. However, their intrinsically low electrical conductivity is a main drawback which results in a relatively lower TE figure of merit for polymer-based TE materials than for inorganic materials. In this paper, a technique to enhance the ion transport properties of polymers through the introduction of ionic liquids is presented. The polymer is in the form of a nanofiber scaffold produced using the electrospinning technique. These fibers were then soaked in different ionic liquids based on substituted imidazolium such as 1-ethyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium bromide. This method was applied to electrospun polyacrylonitrile and a mixture of polyvinyl alcohol and chitosan polymers. The ion transport properties of the membranes have been observed to increase with increasing concentration of ionic liquid, with maximum electrical conductivity of 1.20 × 10−1 S/cm measured at room temperature. Interestingly, the maximum electrical conductivity value surpassed the value of pure ionic liquids. These results indicate that it is possible to significantly improve the electrical conductivity of a polymer membrane through a simple and cost-effective method. This may in turn boost the TE figures of merit of polymer materials, which are well known to be considerably lower than those of inorganic materials. Results in terms of the Seebeck coefficient of the membranes are also presented in this paper to provide an overall representation of the TE potential of the polymer-scaffolded ionic liquid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. O’Dwyer, T.E. Humphrey, and H. Linke, Nanotechnology 17, S338 (2006).

    Article  Google Scholar 

  2. B. Yang, H. Ahuja, and T.N. Tran, HVAC Res. 14, 635 (2008).

    Article  Google Scholar 

  3. G.H. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).

    Article  Google Scholar 

  4. B. Olga, K. Zia Ullah, M. Abdellah, B. Slawomir, F. Mats, B. Magnus, and C. Xavier, Nat. Mater. 10, 429 (2011).

    Article  Google Scholar 

  5. H. Yan, N. Sada, and N. Toshima, J. Therm. Anal. Calorim. 69, 881 (2002).

    Article  Google Scholar 

  6. N. Mateeva, H. Niculescu, J. Schlenoff, and L.R. Testardi, J. Appl. Phys. 83, 3111 (1998).

    Article  Google Scholar 

  7. N.T. Kemp, A.B. Kaiser, C.J. Liu, B. Chapman, O. Mercier, A.M. Carr, H.J. Trodahl, R.G. Buckley, A.C. Partridge, J.Y. Lee, C.Y. Kim, A. Bartl, L. Dunsch, W.T. Smith, and J.S. Shapiro, J. Polym. Sci. B 37, 953 (1999).

    Article  Google Scholar 

  8. S. Masubuchi, S. Kazama, K. Mizoguchi, M. Honda, K. Kume, R. Matsushita, and T. Matsuyama, Synth. Met. 57, 4962 (1993).

    Article  Google Scholar 

  9. J.E. Österholm, P. Passiniemi, H. Isotalo, and H. Stubb, Synth. Met. 18, 213 (1987).

    Article  Google Scholar 

  10. R. Zuzok, A.B. Kaiser, W. Pukacki, and S. Roth, J. Chem. Phys. 95, 1270 (1991).

    Article  Google Scholar 

  11. Y.W. Park, Synth. Met. 45, 173 (1991).

    Article  Google Scholar 

  12. R.D.B. Aïch, N. Blouin, A.I. Bouchard, and M. Leclerc, Chem. Mater. 21, 751 (2009).

    Article  Google Scholar 

  13. I. Lévesque, P.-O. Bertrand, N. Blouin, M. Leclerc, S. Zecchin, G. Zotti, C.I. Ratcliffe, D.D. Klug, X. Gao, F. Gao, and J.S. Tse, Chem. Mater. 19, 2128 (2007).

    Article  Google Scholar 

  14. C. Liu, J. Xu, B. Lu, R. Yue, and F. Kong, J. Electron. Mater. 41, 639 (2012).

    Article  Google Scholar 

  15. D. Papkov, Y. Zou, M.N. Andalib, A. Goponenko, S.Z.D. Cheng, and Y.A. Dzenis, ACS Nano 7, 3324 (2013).

    Article  Google Scholar 

  16. H. Mette and C. Loscoe, Rev. Sci. Instrum. 37, 1537 (1966).

    Article  Google Scholar 

  17. C.-H. Chen, J.C. LaRue, R.D. Nelson, L. Kulinsky, and M.J. Madou, J. Appl. Polym. Sci. 125, 3134 (2012).

    Article  Google Scholar 

  18. S. Ling, W. Jianjun, and B. Elmar, Sci. Rep. 3 (2013). doi:10.1038/srep01991.

  19. I.S. Chronakis, S. Grapenson, and A. Jakob, Polymer 47, 1597 (2006).

    Article  Google Scholar 

  20. P.N.N. Tshibangu, S. Nomathemba, and D. Ezekiel Dixon, Int. J. Electrochem. Sci. 6, 2201 (2011).

    Google Scholar 

  21. S. Chandra, S.S. Sekhon, and N. Arora, Ionics 6, 112 (2000).

    Article  Google Scholar 

  22. T. Stöcker, A. Köhler, and R. Moos, J. Polym. Sci. B 50, 976 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Said.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, R.S., Said, S.M., Sahamir, S.R. et al. Thermoelectric Potential of Polymer-Scaffolded Ionic Liquid Membranes. J. Electron. Mater. 43, 1585–1589 (2014). https://doi.org/10.1007/s11664-013-2799-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2799-1

Keywords

Navigation