Journal of Electronic Materials

, Volume 41, Issue 6, pp 1792–1798 | Cite as

Nanostructure, Excitations, and Thermoelectric Properties of Bi2Te3-Based Nanomaterials

  • Z. Aabdin
  • N. Peranio
  • O. Eibl
  • W. Töllner
  • K. Nielsch
  • D. Bessas
  • R.P. Hermann
  • M. Winkler
  • J. König
  • H. Böttner
  • V. Pacheco
  • J. Schmidt
  • A. Hashibon
  • C. Elsässer
Article

Abstract

The effect of dimensionality and nanostructure on thermoelectric properties in Bi2Te3-based nanomaterials is summarized. Stoichiometric, single-crystalline Bi2Te3 nanowires were prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix, yielding transport in the basal plane. Polycrystalline, textured Sb2Te3 and Bi2Te3 thin films were grown at room temperature using molecular beam epitaxy and subsequently annealed at 250°C. Sb2Te3 films revealed low charge carrier density of 2.6 × 1019 cm−3, large thermopower of 130 μV K−1, and large charge carrier mobility of 402 cm2 V−1 s−1. Bi2(Te0.91Se0.09)3 and (Bi0.26Sb0.74)2Te3 nanostructured bulk samples were prepared from as-cast materials by ball milling and subsequent spark plasma sintering, yielding grain sizes of 50 nm and thermal diffusivities reduced by 60%. Structure, chemical composition, as well as electronic and phononic excitations were investigated by x-ray and electron diffraction, nuclear resonance scattering, and analytical energy-filtered transmission electron microscopy. Ab initio calculations yielded point defect energies, excitation spectra, and band structure. Mechanisms limiting the thermoelectric figure of merit ZT for Bi2Te3 nanomaterials are discussed.

Keywords

Thermoelectric effects nanostructured materials x-ray diffraction (XRD) analytical transmission electron microscopy (TEM) lattice dynamics point defects density functional theory (DFT) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).CrossRefGoogle Scholar
  2. 2.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature (London) 413, 597 (2001).CrossRefGoogle Scholar
  3. 3.
    L. Trahey, C.R. Becker, and A.M. Stacy, Nano Lett. 7, 2535 (2007).CrossRefGoogle Scholar
  4. 4.
    L. Li, Y.W. Yang, X.H. Huang, G.H. Li, and L.D. Zhang, Nanotechnology 17, 1706 (2006).CrossRefGoogle Scholar
  5. 5.
    J.H. Zhou, C.G. Jin, J.H. Seol, X.G. Li, and L. Shi, Appl. Phys. Lett. 87, 133109 (2005).CrossRefGoogle Scholar
  6. 6.
    C.G. Jin, X.Q. Xiang, C. Jia, W.F. Liu, W.L. Cai, L.Z. Yao, and X.G. Li, J. Phys. Chem. B 108, 1844 (2004).CrossRefGoogle Scholar
  7. 7.
    B. Huang, C. Lawrence, A. Gross, G.-S. Hwang, N. Ghafouri, S.-W. Lee, H. Kim, C.-P. Li, C. Uher, K. Najafi, and M. Kaviany, J. Appl. Phys. 104, 113710 (2008).CrossRefGoogle Scholar
  8. 8.
    L.W. da Silva, M. Kaviany, and C. Uher, J. Appl. Phys. 97, 114903 (2005).CrossRefGoogle Scholar
  9. 9.
    L.M. Goncalves, C. Couto, P. Alpuim, A.G. Rolo, F. Völklein, and J.H. Correia, Thin Solid Films 518, 2816 (2010).CrossRefGoogle Scholar
  10. 10.
    H. Zou, D.M. Rowe, and S.G.K. Williams, Thin Solid Films 408, 270 (2002).CrossRefGoogle Scholar
  11. 11.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).CrossRefGoogle Scholar
  12. 12.
    Y.Q. Cao, X.B. Zhao, T.J. Zhu, X.B. Zhang, and J.P. Tu, Appl. Phys. Lett. 92, 143106 (2008).CrossRefGoogle Scholar
  13. 13.
    W. Xie, J. He, H.J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R.D. Copley, C.M. Brown, Q. Zhang, and T.M. Tritt, Nano Lett. 10, 3283 (2010).CrossRefGoogle Scholar
  14. 14.
    D.G. Ebling, A. Jacquot, H. Böttner, L. Kirste, J. Schmidt, and M. Aguirre, J. Electron. Mater. 38, 1450 (2009).CrossRefGoogle Scholar
  15. 15.
    J. Lee, S. Farhangfar, J. Lee, L. Cagnon, R. Scholz, U. Gösele, and K. Nielsch, Nanotechnology 19, 365701 (2008).CrossRefGoogle Scholar
  16. 16.
    N. Peranio, E. Leister, W. Töllner, O. Eibl, and K. Nielsch, Adv. Funct. Mater. 22, 151 (2012).CrossRefGoogle Scholar
  17. 17.
    J.D. König, M. Winkler, S. Buller, W. Bensch, U. Schürmann, L. Kienle, and H. Böttner, J. Electron. Mater. 40, 1266 (2011).CrossRefGoogle Scholar
  18. 18.
    H. Böttner, A. Schubert, H. Kölbel, A. Gavrikov, A. Mahlke, and J. Nurnus, Proceedings of the 23rd International Conference on Thermoelectrics (ICT 2004), Adelaide, Australia, 2004, Paper No. 9, (Piscataway, NJ: IEEE, 2004).Google Scholar
  19. 19.
    N. Peranio, M. Winkler, Z. Aabdin, J. König, H. Böttner, and O. Eibl, Phys. Status Solidi A 209, 289 (2012).CrossRefGoogle Scholar
  20. 20.
    N. Peranio and O. Eibl, Phys. Status Solidi A 204, 3243 (2007).CrossRefGoogle Scholar
  21. 21.
    N. Peranio and O. Eibl, J. Appl. Phys. 103, 024314 (2008).CrossRefGoogle Scholar
  22. 22.
    N. Peranio, Z. Aabdin, W. Töllner, M. Winkler, J. König, O. Eibl, K. Nielsch, and H. Böttner, MRS Proc. 1329 (2011). doi:10.1557/opl.2011.1238.
  23. 23.
    D.M. Rowe, CRC Handbook of Thermoelectrics, Chap. 19 (Boca Raton, FL: CRC, 1995).Google Scholar
  24. 24.
    M. Heidelmann, J. Barthel, and L. Houben, Ultramicroscopy 109, 1447 (2009).CrossRefGoogle Scholar
  25. 25.
    H.-C. Wille, R.P. Hermann, I. Sergueev, U. Pelzer, A. Möchel, T. Claudio, J. Perßon, R. Rüffer, A. Said, and Yu.V. Schvyd’ko, Europhys. Lett. 91, 62001 (2010).CrossRefGoogle Scholar
  26. 26.
    I. Sergueev, H.-C. Wille, R.P. Hermann, D. Bessas, Y.V. Shvyd’ko, M. Zajac, and R. Rüffer, J. Synchrotron Radiat. 18, 802 (2011).CrossRefGoogle Scholar
  27. 27.
    G.R. Miller and C.-Y. Li, J. Phys. Chem. Solids 26, 173 (1965).CrossRefGoogle Scholar
  28. 28.
    J. Horák, K. Čermák, and L. Koudelka, J. Phys. Chem. Solids 47, 805 (1986).CrossRefGoogle Scholar
  29. 29.
    A. Hashibon and C. Elsässer, Phys. Rev. B 84, 144117 (2011).CrossRefGoogle Scholar
  30. 30.
    J.E. Cornett and O. Rabin, Appl. Phys. Lett. 98, 182104 (2011).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Z. Aabdin
    • 1
  • N. Peranio
    • 1
  • O. Eibl
    • 1
  • W. Töllner
    • 2
  • K. Nielsch
    • 2
  • D. Bessas
    • 3
    • 4
  • R.P. Hermann
    • 3
    • 4
  • M. Winkler
    • 5
  • J. König
    • 5
  • H. Böttner
    • 5
  • V. Pacheco
    • 6
  • J. Schmidt
    • 6
  • A. Hashibon
    • 7
  • C. Elsässer
    • 7
  1. 1.Institut für Angewandte PhysikEberhard Karls Universität TübingenTübingenGermany
  2. 2.Institut für Angewandte PhysikUniversität HamburgHamburgGermany
  3. 3.Jülich Centre for Neutron Science JCNS und Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbHJülichGermany
  4. 4.Faculté des SciencesUniversité de LiègeLiègeBelgium
  5. 5.Fraunhofer-Institut Physikalische Messtechnik IPMFreiburgGermany
  6. 6.Fraunhofer Institut für Fertigungstechnik und Angewandte Materialforschung (IFAM-DD)DresdenGermany
  7. 7.Fraunhofer-Institut für Werkstoffmechanik IWMFreiburgGermany

Personalised recommendations