Skip to main content
Log in

Nanostructure, Excitations, and Thermoelectric Properties of Bi2Te3-Based Nanomaterials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of dimensionality and nanostructure on thermoelectric properties in Bi2Te3-based nanomaterials is summarized. Stoichiometric, single-crystalline Bi2Te3 nanowires were prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix, yielding transport in the basal plane. Polycrystalline, textured Sb2Te3 and Bi2Te3 thin films were grown at room temperature using molecular beam epitaxy and subsequently annealed at 250°C. Sb2Te3 films revealed low charge carrier density of 2.6 × 1019 cm−3, large thermopower of 130 μV K−1, and large charge carrier mobility of 402 cm2 V−1 s−1. Bi2(Te0.91Se0.09)3 and (Bi0.26Sb0.74)2Te3 nanostructured bulk samples were prepared from as-cast materials by ball milling and subsequent spark plasma sintering, yielding grain sizes of 50 nm and thermal diffusivities reduced by 60%. Structure, chemical composition, as well as electronic and phononic excitations were investigated by x-ray and electron diffraction, nuclear resonance scattering, and analytical energy-filtered transmission electron microscopy. Ab initio calculations yielded point defect energies, excitation spectra, and band structure. Mechanisms limiting the thermoelectric figure of merit ZT for Bi2Te3 nanomaterials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  CAS  Google Scholar 

  2. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature (London) 413, 597 (2001).

    Article  CAS  Google Scholar 

  3. L. Trahey, C.R. Becker, and A.M. Stacy, Nano Lett. 7, 2535 (2007).

    Article  CAS  Google Scholar 

  4. L. Li, Y.W. Yang, X.H. Huang, G.H. Li, and L.D. Zhang, Nanotechnology 17, 1706 (2006).

    Article  CAS  Google Scholar 

  5. J.H. Zhou, C.G. Jin, J.H. Seol, X.G. Li, and L. Shi, Appl. Phys. Lett. 87, 133109 (2005).

    Article  Google Scholar 

  6. C.G. Jin, X.Q. Xiang, C. Jia, W.F. Liu, W.L. Cai, L.Z. Yao, and X.G. Li, J. Phys. Chem. B 108, 1844 (2004).

    Article  CAS  Google Scholar 

  7. B. Huang, C. Lawrence, A. Gross, G.-S. Hwang, N. Ghafouri, S.-W. Lee, H. Kim, C.-P. Li, C. Uher, K. Najafi, and M. Kaviany, J. Appl. Phys. 104, 113710 (2008).

    Article  Google Scholar 

  8. L.W. da Silva, M. Kaviany, and C. Uher, J. Appl. Phys. 97, 114903 (2005).

    Article  Google Scholar 

  9. L.M. Goncalves, C. Couto, P. Alpuim, A.G. Rolo, F. Völklein, and J.H. Correia, Thin Solid Films 518, 2816 (2010).

    Article  CAS  Google Scholar 

  10. H. Zou, D.M. Rowe, and S.G.K. Williams, Thin Solid Films 408, 270 (2002).

    Article  CAS  Google Scholar 

  11. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  12. Y.Q. Cao, X.B. Zhao, T.J. Zhu, X.B. Zhang, and J.P. Tu, Appl. Phys. Lett. 92, 143106 (2008).

    Article  Google Scholar 

  13. W. Xie, J. He, H.J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R.D. Copley, C.M. Brown, Q. Zhang, and T.M. Tritt, Nano Lett. 10, 3283 (2010).

    Article  CAS  Google Scholar 

  14. D.G. Ebling, A. Jacquot, H. Böttner, L. Kirste, J. Schmidt, and M. Aguirre, J. Electron. Mater. 38, 1450 (2009).

    Article  CAS  Google Scholar 

  15. J. Lee, S. Farhangfar, J. Lee, L. Cagnon, R. Scholz, U. Gösele, and K. Nielsch, Nanotechnology 19, 365701 (2008).

    Article  Google Scholar 

  16. N. Peranio, E. Leister, W. Töllner, O. Eibl, and K. Nielsch, Adv. Funct. Mater. 22, 151 (2012).

    Article  CAS  Google Scholar 

  17. J.D. König, M. Winkler, S. Buller, W. Bensch, U. Schürmann, L. Kienle, and H. Böttner, J. Electron. Mater. 40, 1266 (2011).

    Article  Google Scholar 

  18. H. Böttner, A. Schubert, H. Kölbel, A. Gavrikov, A. Mahlke, and J. Nurnus, Proceedings of the 23rd International Conference on Thermoelectrics (ICT 2004), Adelaide, Australia, 2004, Paper No. 9, (Piscataway, NJ: IEEE, 2004).

  19. N. Peranio, M. Winkler, Z. Aabdin, J. König, H. Böttner, and O. Eibl, Phys. Status Solidi A 209, 289 (2012).

    Article  CAS  Google Scholar 

  20. N. Peranio and O. Eibl, Phys. Status Solidi A 204, 3243 (2007).

    Article  CAS  Google Scholar 

  21. N. Peranio and O. Eibl, J. Appl. Phys. 103, 024314 (2008).

    Article  Google Scholar 

  22. N. Peranio, Z. Aabdin, W. Töllner, M. Winkler, J. König, O. Eibl, K. Nielsch, and H. Böttner, MRS Proc. 1329 (2011). doi:10.1557/opl.2011.1238.

  23. D.M. Rowe, CRC Handbook of Thermoelectrics, Chap. 19 (Boca Raton, FL: CRC, 1995).

  24. M. Heidelmann, J. Barthel, and L. Houben, Ultramicroscopy 109, 1447 (2009).

    Article  CAS  Google Scholar 

  25. H.-C. Wille, R.P. Hermann, I. Sergueev, U. Pelzer, A. Möchel, T. Claudio, J. Perßon, R. Rüffer, A. Said, and Yu.V. Schvyd’ko, Europhys. Lett. 91, 62001 (2010).

    Article  Google Scholar 

  26. I. Sergueev, H.-C. Wille, R.P. Hermann, D. Bessas, Y.V. Shvyd’ko, M. Zajac, and R. Rüffer, J. Synchrotron Radiat. 18, 802 (2011).

    Article  CAS  Google Scholar 

  27. G.R. Miller and C.-Y. Li, J. Phys. Chem. Solids 26, 173 (1965).

    Article  CAS  Google Scholar 

  28. J. Horák, K. Čermák, and L. Koudelka, J. Phys. Chem. Solids 47, 805 (1986).

    Article  Google Scholar 

  29. A. Hashibon and C. Elsässer, Phys. Rev. B 84, 144117 (2011).

    Article  Google Scholar 

  30. J.E. Cornett and O. Rabin, Appl. Phys. Lett. 98, 182104 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Peranio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aabdin, Z., Peranio, N., Eibl, O. et al. Nanostructure, Excitations, and Thermoelectric Properties of Bi2Te3-Based Nanomaterials. J. Electron. Mater. 41, 1792–1798 (2012). https://doi.org/10.1007/s11664-012-1997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1997-6

Keywords

Navigation