Journal of Electronic Materials

, Volume 41, Issue 2, pp 283–301

The Role of Elastic and Plastic Anisotropy of Sn in Recrystallization and Damage Evolution During Thermal Cycling in SAC305 Solder Joints

  • Thomas R. Bieler
  • Bite Zhou
  • Lauren Blair
  • Amir Zamiri
  • Payam Darbandi
  • Farhang Pourboghrat
  • Tae-Kyu Lee
  • Kuo-Chuan Liu
Article

Abstract

Because failures in lead-free solder joints occur at locations other than the most highly shear-strained regions, reliability prediction is challenging. To gain physical understanding of this phenomenon, physically based understanding of how elastic and plastic deformation anisotropy affect microstructural evolution during thermomechanical cycling is necessary. Upon solidification, SAC305 (Sn-3.0Ag-0.5Cu) solder joints are usually single or tricrystals. The evolution of microstructures and properties is characterized statistically using optical and orientation imaging microscopy. In situ synchrotron x-ray measurements during thermal cycling are used to examine how crystal orientation and thermal cycling history change strain history. Extensive characterization of a low-stress plastic ball grid array (PBGA) package design at different stages of cycling history is compared with preliminary experiments using higher-stress package designs. With time and thermal history, microstructural evolution occurs mostly from continuous recrystallization and particle coarsening that is unique to each joint, because of the specific interaction between local thermal and displacement boundary conditions and the strong anisotropic elastic, plastic, expansion, and diffusional properties of Sn crystals. The rate of development of recrystallized microstructures is a strong function of strain and aging. Cracks form at recrystallized (random) boundaries, and then percolate through recrystallized regions. Complications arising from electromigration and corrosion are also considered.

Keywords

Sn Microstructure Anisotropy Thermal expansion Thermal cycling Slip systems Damage Recrystallization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal, IEEE Trans. Compon. Packag. Technol. 31, 370 (2008).CrossRefGoogle Scholar
  2. 2.
    T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, and E.J. Cotts, 2006 Proceedings. 56th Electronic Components & Technology Conference (IEEE Cat. No. 06CH37766C) (2006), p. 6.Google Scholar
  3. 3.
    L.P. Lehman, S.N. Atavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesen, and E.J. Cotts, J. Electron. Mater. 33, 1581 (2004).CrossRefGoogle Scholar
  4. 4.
    L.P. Lehman, Y. Xing, T.R. Bieler, and E.J. Cotts, Acta Mater. 58, 3546 (2010).CrossRefGoogle Scholar
  5. 5.
    K.S. Kim, S.H. Huh, and K. Suganuma, Mater. Sci. Eng. A333, 106 (2002).Google Scholar
  6. 6.
    R. Kinyanjui, L.P. Lehman, L. Zavalij, and E. Cotts, J. Mater. Res. 20, 2914 (2005).Google Scholar
  7. 7.
    S. Terashima, T. Kobayashi, and M. Tanaka, Sci. Technol. Weld. Join. 13, 732 (2008).CrossRefGoogle Scholar
  8. 8.
    Sun.-Kyoung. Seo, Sung.K. Kang, Moon.Gi. Cho, Da.-Yuan. Shih, and Hyuck.Mo. Lee, J. Electron. Mater. 38, 2461 (2009).CrossRefGoogle Scholar
  9. 9.
    D.W. Henderson, J.J. Woods, T.A. Gosselin, J. Bartelo, D.E. King, T.M. Korhonen, M.A. Korhonen, L.P. Lehman, E.J. Cotts, Sung.K. Kang, P. Lauro, Da-Yuan Shih, C. Goldsmith, and K.P. Puttlitz, J. Mater. Res. 19, 1608 (2004).CrossRefGoogle Scholar
  10. 10.
    J.J. Sundelin, S.T. Nurmi, and T.K. Lepisto, Mater. Sci. Eng. A 474, 201 (2008).CrossRefGoogle Scholar
  11. 11.
    J. Li, H. Xu, T.T. Mattila, J.K. Kivilahti, T. Laurila, and M. Paulasto-Krockel, Comput. Mater. Sci. 50, 690 (2010).CrossRefGoogle Scholar
  12. 12.
    T.T. Mattila and J.K. Kivilahti, IEEE Trans. Compon. Packag. Technol. 33, 629 (2010).CrossRefGoogle Scholar
  13. 13.
    J. Li, H. Xu, T.T. Mattila, J.K. Kivilahti, T. Laurila, and M. Paulasto-Kröckel, Comput. Mater. Sci. 50, 690 (2010).CrossRefGoogle Scholar
  14. 14.
    T.T. Nguyen, D. Yu, and S.B. Park, J. Electron. Mater. 40, 1409 (2011).CrossRefGoogle Scholar
  15. 15.
    I. Dutta, D. Pan, R.A. Marks, and S.G. Jadhav, Mater. Sci. Eng. A 410–411, 48 (2005).Google Scholar
  16. 16.
    G. Cuddalorepatta and A. Dasgupta, Acta Mater. 58, 5989 (2010).CrossRefGoogle Scholar
  17. 17.
    T.R. Bieler, B. Zhou, L. Blair, A. Zamiri, P. Darbandi, F. Pourboghrat, T.-K. Lee, and K.-C. Liu, Paper 5F.1 (Piscataway, NJ: IRPS/IEEE, 2011), p. IRPS11-573-81.Google Scholar
  18. 18.
    T.-K. Lee, K.-C. Liu, and T.R. Bieler, J. Electron. Mater. 38, 2685 (2009).CrossRefGoogle Scholar
  19. 19.
    B. Zhou, T.R. Bieler, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 38, 2702 (2009).CrossRefGoogle Scholar
  20. 20.
    T.R. Bieler, T.-K. Lee, and K.C. Liu, J. Electron. Mater. 38, 2712 (2009).CrossRefGoogle Scholar
  21. 21.
    T.-K. Lee, Bi. Zhou, L. Blair, K.-C. Liu, and T.R. Bieler, Proceedings 2009 International Symposium on Microelectronics, IMAPS—International Microelectronics and Packaging Society, Washington DC (November 1–5, 2009, San Jose, California), p. 142.Google Scholar
  22. 22.
    B. Zhou, T.R. Bieler, G. Wu, S. Zaefferer, T.-K. Lee, and K.-C. Liu, Proceedings 2009 International Symposium on Microelectronics, IMAPS—International Microelectronics and Packaging Society, Washington DC (November 1–5, 2009, San Jose, California), p. 158.Google Scholar
  23. 23.
    T.-K. Lee, Bite Zhou, L. Blair, K.-C. Liu, and T.R. Bieler, J. Electron. Mater. 39, 2588 (2010).CrossRefGoogle Scholar
  24. 24.
    B. Zhou, T.R. Bieler, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 39, 2669 (2010).CrossRefGoogle Scholar
  25. 25.
    T.-K. Lee, H.T. Ma, K.-C. Liu, and J. Xue, J. Electron. Mater. 39, 2564 (2010).CrossRefGoogle Scholar
  26. 26.
    A.U. Telang, T.R. Bieler, S. Choi, and K.N. Subramanian, J. Mater. Res. 17, 2294 (2002).CrossRefGoogle Scholar
  27. 27.
    B. Zhou, T.R. Bieler, G. Wu, S. Zaefferer, T.-K. Lee, and K.-C. Liu (this volume). doi:10.1007/s11664-011-1785-8.
  28. 28.
    I.E. Anderson, J.W. Walleser, J.L. Harringa, F. Laabs, and A. Kracher, J. Electron. Mater. 38, 2770 (2009).CrossRefGoogle Scholar
  29. 29.
    G.J. Jackson, H. Lu, R. Durairaj, N. Hoo, C. Bailey, N.N. Ekere, and J. Wright, J. Electron. Mater. 33, 1524 (2004).CrossRefGoogle Scholar
  30. 30.
    A.U. Telang, T.R. Bieler, and M.A. Crimp, Mater. Sci. Eng. A421, 22 (2006).Google Scholar
  31. 31.
    D.G. House and E.V. Vernon, Br. J. Appl. Phys. 11, 254 (1960).CrossRefGoogle Scholar
  32. 32.
    J.A. Rayne and B.S. Chandrasekhar, Phys. Rev. 118, 1545 (1960).CrossRefGoogle Scholar
  33. 33.
    V.T. Deshpande and D.B. Sirdeshmukh, Acta Cryst. 15, 294 (1962).CrossRefGoogle Scholar
  34. 34.
    M. Erinc, P.J.G. Schreurs, and M.G.D. Geers, Mech. Mater. 40, 780 (2008).CrossRefGoogle Scholar
  35. 35.
    M.A. Matin, W.P. Vellinga, and M.G.D. Geers, Mater. Sci. Eng. A 445, 44673 (2007).Google Scholar
  36. 36.
    S.-K. Seo, S.-K. Kang, M.-G. Cho, and H.-M. Lee, J. Mater. Res. 25, 1950 (2010).CrossRefGoogle Scholar
  37. 37.
    R. Darveaux, K. Banerji, and I.E.E.E. Trans Components, Hybrid. Manuf. Technol. 15, 1013 (1992).CrossRefGoogle Scholar
  38. 38.
    C.H. Raeder, R.W. Messler, and L.F. Coffin, J. Electron. Mater. 28, 1045 (1999).CrossRefGoogle Scholar
  39. 39.
    A.U. Telang, T.R. Bieler, A. Zamiri, and F. Pourboghrat, Acta Mater. 55, 2265 (2007).CrossRefGoogle Scholar
  40. 40.
    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci. Eng. A, 238219 (1997).Google Scholar
  41. 41.
    D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 1469 (1984).CrossRefGoogle Scholar
  42. 42.
    J.R. Lloyd, N.A. Connelly, He. Xiaoli, K.J. Ryan, and B.H. Wood, Microelectron. Reliab. 50, 1355 (2010).CrossRefGoogle Scholar
  43. 43.
    S. Choi, J. Lee, F. Guo, T.R. Bieler, K.N. Subramanian, and J.P. Lucas, JOM 53, 22 (2001).CrossRefGoogle Scholar
  44. 44.
    F. Yang and J.C.M. Li, J. Mater. Sci.: Mater. Electron. 18, 191 (2007).CrossRefGoogle Scholar
  45. 45.
    B. Düzgün, A.E. Ekinci, I. Karaman, and N. Ucar, J. Mech. Behav. Mater. 10, 187 (1999).CrossRefGoogle Scholar
  46. 46.
    A.E. Ekinci, N. Ucar, G. Cankaya, and B. Düzgün, Indian J. Eng. Mater. Sci. 10, 416 (2003).Google Scholar
  47. 47.
    Y. Kouhashi, Koenronbunshu, Vol. 12 (Sendai: Transactions of the Japanese Society for Strength and Fracture of Materials, 2000), p. 15.Google Scholar
  48. 48.
    M. Fujiwara and T. Hirokawa, J. Jpn. Inst. Met. 51, 830 (1987).Google Scholar
  49. 49.
    R.L.J.M. Ubachs, P.J.G. Schreurs, and M.G.D. Geers, Mech. Mater. 39, 685 (2007).CrossRefGoogle Scholar
  50. 50.
    J. Gong, C. Liu, P.P. Conway, and V.V. Silberschmidt, Comput. Mater. Sci. 43, 199 (2008).CrossRefGoogle Scholar
  51. 51.
    A. Zamiri, T.R. Bieler, and F. Pourboghrat, J. Electron. Mater. 38, 231 (2009).CrossRefGoogle Scholar
  52. 52.
    W. Xie, Cisco Systems, Inc, San Jose, CA, unpublished research.Google Scholar
  53. 53.
    A.U. Telang, T.R. Bieler, and M.A. Crimp, Mater. Sci. Eng. A421, 22 (2006).Google Scholar
  54. 54.
    A.U. Telang and T.R. Bieler, JOM 57, 44 (2005).CrossRefGoogle Scholar
  55. 55.
    L. Yin, L. Wentlent, L. Yang, B. Arfaei, A. Oasaimeh, and P. Borgesen, J. Electron. Mater. (this volume). doi:10.1007/s11664-011-1762-2.
  56. 56.
    S.-K. Seo, S.K. Kang, M.G. Cho, and H.M. Lee, JOM 38, 22 (2010).CrossRefGoogle Scholar
  57. 57.
    K. Chen, N. Tamura, M. Kunz, K.N. Tu, and Y.-S. Lai, J. Appl. Phys. 106, 023502 (2009).CrossRefGoogle Scholar
  58. 58.
    W.H. Lin, Albert.T. Wu, S.Z. Lin, T.H. Chuang, and K.N. Tu, J. Electron. Mater. 36, 753 (2007).CrossRefGoogle Scholar
  59. 59.
    M. Lu, D.-Y. Shih, S.K. Kang, C. Goldsmith, and P. Flaitz, J. Appl. Phys. 106, 053509 (2009).CrossRefGoogle Scholar
  60. 60.
    C. Chen, H.M. Tong, and K.N. Tu, Ann. Rev. Mater. Res. 40, 531 (2010).CrossRefGoogle Scholar
  61. 61.
    T.-K. Lee, B. Liu, B. Zhou, T.R. Bieler, and K.-C. Liu, J. Electron. Mater. 40, 1895 (2011).CrossRefGoogle Scholar
  62. 62.
    M.D. Mathew, H. Yang, S. Movva, and K.L. Murty, Metall. Mater. Trans. A 36, 99 (2005).CrossRefGoogle Scholar
  63. 63.
    L.Z. Zhang, R. Dingreville, T. Bartel, and M.T. Lusk, Metall. Mater. Trans. A 42A, 575 (2011).CrossRefGoogle Scholar
  64. 64.
    N.N. Du, Y. Qi, P.E. Krajewski, and A.F. Bower, Metall. Mater. Trans. A 42A, 651 (2011).CrossRefGoogle Scholar
  65. 65.
    P.E. Krajewski, L.G. Hector, N.N. Du, and A.F. Bower, Acta Mater. 58, 1074 (2010).CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Thomas R. Bieler
    • 1
  • Bite Zhou
    • 1
  • Lauren Blair
    • 1
  • Amir Zamiri
    • 2
  • Payam Darbandi
    • 2
  • Farhang Pourboghrat
    • 2
  • Tae-Kyu Lee
    • 3
  • Kuo-Chuan Liu
    • 3
  1. 1.Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA
  2. 2.Mechanical EngineeringMichigan State UniversityEast LansingUSA
  3. 3.Component Quality and Technology GroupCisco Systems, Inc.San JoseUSA

Personalised recommendations