Skip to main content
Log in

The Phenomenology of Ion Implantation-Induced Blistering and Thin-Layer Splitting in Compound Semiconductors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Hydrogen and/or helium implantation-induced surface blistering and layer splitting in compound semiconductors such as InP, GaAs, GaN, AlN, and ZnO are discussed. The blistering phenomenon depends on many parameters such as the semiconductor material, ion fluence, ion energy, and implantation temperature. The optimum values of these parameters for compound semiconductors are presented. The blistering and splitting processes in silicon have been studied in detail, motivated by the fabrication of the widely used silicon-on-insulator wafers. Hence, a comparison of the blistering process in Si and compound semiconductors is also presented. This comparative study is technologically relevant since ion implantation-induced layer splitting combined with direct wafer bonding in principle allows the transfer of any type of semiconductor layer onto any foreign substrate of choice—the technique is known as the ion-cut or Smart-Cut™ method. For the aforementioned compound semiconductors, investigations regarding layer transfer using the ion-cut method are still in their infancy. We report feasibility studies of layer transfer by the ion-cut method for some of the most important and widely used compound semiconductors. The importance of characteristic values for successful wafer bonding such as wafer bow and surface flatness as well as roughness are discussed, and difficulties in achieving some of these values are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Baca and C.I.H. Ashby, Fabrication of GaAs Devices (London: The Institute of Electrical Engineers, 2005).

    Google Scholar 

  2. O. Wada and H. Hasegawa, InP-Based Materials and Devices (John Wiley & Sons, Inc, 1999).

  3. H. Morkoç and Ü. ÖzgÜr, Zinc Oxide: Fundamentals, Materials and Device Technology (Weinheim: Wiley-VCH, 2009).

    Google Scholar 

  4. H. Markoç, Handbook of Nitride Semiconductors and Devices Vol. 3: GaN-based Optical and Electronic Devices (Weinheim: Wiley-VCH, 2008).

    Google Scholar 

  5. O. Oda, Compound Semiconductor Bulk Materials and Characterizations (World Scientific, 2007).

  6. M. Ilgems and G.L. Pearson, Annu. Rev. Mater. Sci. 5, 345 (1975).

    Article  ADS  Google Scholar 

  7. S. Adachi, Properties of Semiconductor Alloys (Wiley, 2009).

  8. www.freiberger.com/, www.axt.com/, www.sumitomoelectricusa.com.

  9. P. Gibbart, Rep. Prog. Phys. 67, 667 (2004).

    Article  ADS  Google Scholar 

  10. See the following web-sites for GaN bulk wafers: www.lumilog.com, www.kyma.com, www.cree.com.

  11. S.B. Schujman, L.J. Schowalter, W. Liu, and J. Smart, Proc. SPIE 6121, 61210K (2006).

    Article  Google Scholar 

  12. See the following web-sites for AlN bulk wafers: www.crystal-is.com, www.oxford-instruments.com, www.thefoxgroupinc.com.

  13. K. Maeda, M. Sato, I. Niikura, and T. Fukuda, Semicond. Sci. Technol. 20, S49 (2005).

    Article  CAS  ADS  Google Scholar 

  14. See the following web-sites for ZnO bulk wafers: http://www.tew.co.jp, www.cradley-crystals.com, http://www.cermetinc.com.

  15. M. Bruel, Electron. Lett. 31, 1201 (1995).

    Article  CAS  Google Scholar 

  16. Q.-Y. Tong and U. Gösele, Adv. Mater. 11, 1404 (1999).

    Article  Google Scholar 

  17. S.H. Christiansen, R. Singh, and U. Gösele, Proc. IEEE 94, 2060 (2006).

    Article  CAS  Google Scholar 

  18. Q.-Y. Tong, K. Gutjahr, S. Hopfe, U. Gösele, and T.H. Lee, Appl. Phys. Lett. 70, 1390 (1997).

    Article  CAS  ADS  Google Scholar 

  19. L.-J. Huang, Q.-Y. Tong, Y.-L. Chao, T.-H. Lee, T. Martini, and U. Gösele, Appl. Phys. Lett. 74, 982 (1999).

    Article  CAS  ADS  Google Scholar 

  20. M.K. Weldon, V.E. Marsico, Y.J. Chabal, A. Agarwal, D.J. Eaglesham, J. Sapjeta, W.L. Brown, D.C. Jacobson, Y. Caudano, S.B. Christman, and E.E. Chaban, J. Vac. Sci. Technol. B 15, 1065 (1997).

    Article  CAS  Google Scholar 

  21. C.M. Varma, Appl. Phys. Lett. 71, 3519 (1997).

    Article  CAS  ADS  Google Scholar 

  22. T. Höchbauer, A. Misra, M. Nastasi, and J.W. Mayer, J. Appl. Phys. 92, 2335 (2002).

    Article  ADS  Google Scholar 

  23. J.K. Lee, Y. Lin, Q.X. Jia, T. Höchbauer, H.S. Jung, L. Shao, A. Misra, and M. Nastasi, Appl. Phys. Lett. 89, 101901 (2006).

    Article  ADS  Google Scholar 

  24. P. Nguyen, I. Cayrefourcq, K.K. Bourdelle, A. Boussagol, E. Guiot, N.B. Mohammed, N. Sousbie, and T. Akatsu, J. Appl. Phys. 97, 083527 (2005).

    Article  ADS  Google Scholar 

  25. B. Terreault, Phys. Stat. Sol. (a) 204, 2129 (2007).

    Article  CAS  ADS  Google Scholar 

  26. See the web-site: www.soitec.com.

  27. Q.Y. Tong and U. Gösele, Semiconductor Wafer Bonding: Science and Technology (Wiley, 1999).

  28. M. Alexe and U. Gösele, eds., Wafer Bonding: Applications and Technology (Springer, 2004).

  29. G.K. Celler and S. Cristoloveanu, J. Appl. Phys. 93, 4955 (2003).

    Article  CAS  ADS  Google Scholar 

  30. S.W. Bedell and W.A. Lanford, J. Appl. Phys. 90, 1138 (2001).

    Article  CAS  ADS  Google Scholar 

  31. T. Akatsu, K.K. Bourdelle, C. Richtarch, B. Faure, and F. Letertre, Appl. Phys. Lett. 86, 181910 (2005).

    Article  ADS  Google Scholar 

  32. J.M. Zahler, A.F.I. Morral, M.J. Griggs, H.A. Atwater, and Y.J. Chabal, Phys. Rev. B 75, 035309 (2007).

    Article  ADS  Google Scholar 

  33. R. Job and W. Jüngen, Mat. Res. Soc. Symp. 0994-F09-05 (2007).

    Google Scholar 

  34. C. Deguet, L. Sanchez, T. Akatsu, F. Allibert, J. Dechamp, F. Madeira, F. Mazen, A. Tauzin, V. Loup, C. Richtarch, D. Mercier, T. Signamarcheix, F. Letertre, B. Depuydt, and N. Kernevez, Electron. Lett. 42, 415 (2006).

    Article  CAS  Google Scholar 

  35. Y.-L. Chao, R. Scholz, M. Reiche, U. Gösele, and J.C.S. Woo, Jpn. J. Appl. Phys. 45, 8565 (2006).

    Article  CAS  ADS  Google Scholar 

  36. L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, Electron. Lett. 32, 1144 (1996).

    Article  Google Scholar 

  37. E. Jalaguier, B. Aspar, E. Pocas, J.F. Michaud, M. Zussy, A.M. Papon, and M. Bruel, Electron. Lett. 34, 408 (1998).

    Article  CAS  Google Scholar 

  38. E. Ligeon and A. Guivarc’h, Radiat. Eff. 27, 129 (1976).

    Article  CAS  Google Scholar 

  39. A. Agarwal, T.E. Haynes, V.C. Venezia, O.W. Holland, and D.J. Eaglesham, Appl. Phys. Lett. 72, 1086 (1998).

    Article  CAS  ADS  Google Scholar 

  40. Q.Y. Tong, L.J. Huang, and U.M. Goesele, J. Electron. Mater. 29, 928 (2000).

    Article  CAS  ADS  Google Scholar 

  41. G. Gawlik, J. Jagielski, and B. Piatkowski, Vacuum 70, 103 (2003).

    Article  CAS  Google Scholar 

  42. I. Radu, I. Szafraniak, R. Scholz, M. Alexe, and U. Gösele, Appl. Phys. Lett. 86, 2413 (2003).

    Article  ADS  Google Scholar 

  43. I. Radu, I. Szafraniak, R. Scholz, M. Alexe, and U. Gösele, J. Appl. Phys. 94, 7820 (2003).

    Article  CAS  ADS  Google Scholar 

  44. I. Radu (Ph.D. thesis, Max Planck Institute of Microstructure Physics, Halle, Germany, 2003).

  45. M. Webb, C. Jeynes, R.M. Gwilliam, Z. Tabatabaian, A. Royale, and B.J. Sealy, Nucl. Instrum. Meth. Phys. Rev. B 237, 193 (2005).

    Article  CAS  ADS  Google Scholar 

  46. H.J. Woo, H.W. Choi, G.D. Kim, J.K. Kim, and K.J. Kim, Surf. Coat. Technol. 203, 2370 (2009).

    Article  CAS  Google Scholar 

  47. L. Di Cioccio, E. Jalaquier, and F. Letertre, Phys. Stat. Sol. (a) 202, 509 (2005).

    Article  CAS  ADS  Google Scholar 

  48. Q.-Y. Tong, Y.-L. Chao, L.-J. Haung, and U. Gösele, Electron. Lett. 35, 341 (1999).

    Article  CAS  Google Scholar 

  49. E. Jalaquier, B. Aspar, S. Pocas, J.F. Michaud, A.M. Papon, and M. Bruel, Proc. 11th Int. Conf. InP and Related Materials (Piscataway, NJ, USA: IEEE, 1998), p. 26.

  50. A.F.i. Morral, J.M. Zahler, and H.A. Atwater, Appl. Phys. Lett. 83, 5413 (2003).

    Article  ADS  Google Scholar 

  51. A.F.i. Morral, J.M. Zahler, M.J. Griggs, H.A. Atwater, and Y.J. Chabal, Phys. Rev. B 72, 085219 (2005).

    Article  ADS  Google Scholar 

  52. S. Hayashi, D. Bruno, and M.S. Goorsky, Appl. Phys. Lett. 85, 236 (2004).

    Article  CAS  ADS  Google Scholar 

  53. S. Hayashi, R. Sandhu, and M.S. Goorsky, J. Electrochem. Soc. 154, H293 (2007).

    Article  CAS  Google Scholar 

  54. R. Singh, I. Radu, R. Scholz, C. Himcinschi, U. Gösele, and S.H. Christiansen, J. Lumin. 121, 379 (2006).

    Article  CAS  Google Scholar 

  55. R. Singh, I. Radu, R. Scholz, C. Himcinschi, U. Gösele, and S.H. Christiansen, Semicond. Sci. Technol. 21, 1311 (2006).

    Article  CAS  ADS  Google Scholar 

  56. P. Chen, Z. Di, M. Nastasi, E. Bruno, M.G. Grimaldi, N.D. Theodore, and S.S. Lau, Appl. Phys. Lett. 92, 202107 (2008).

    Article  ADS  Google Scholar 

  57. S.O. Kucheyev, J.S. Williams, C. Jagadish, Z. Jou, and Z. Li, J. Appl. Phys. 91, 3928 (2001).

    Article  ADS  Google Scholar 

  58. A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J.F. Michaud, A.M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, and N. Kernevez, Electron. Lett. 41, 668 (2005).

    Article  CAS  Google Scholar 

  59. R. Singh, I. Radu, U. Gösele, and S.H. Christiansen, Phys. Stat. Sol. (c) 3, 1754 (2006).

    Article  CAS  Google Scholar 

  60. I. Radu, R. Singh, R. Scholz, U. Gösele, S. Christiansen, G. Bruederl, C. Eichler, and V. Haerle, Appl. Phys. Lett. 89, 031912 (2006).

    Article  ADS  Google Scholar 

  61. H.J. Woo, H.W. Choi, W. Hong, J.H. Park, and C.H. Eum, Surf. Coat. Technol. 203, 2375 (2009).

    Article  CAS  Google Scholar 

  62. R. Singh, I. Radu, G. Bruederl, C. Eichler, V. Haerle, U. Gösele, and S.H. Christiansen, Semicond. Sci. Technol. 22, 418 (2007).

    Article  CAS  ADS  Google Scholar 

  63. O. Moutanabbir, Y.J. Chabal, M. Chicoine, S. Christiansen, R. Krause-Rehberg, F. Schiettekatte, R. Scholz, O. Seitz, S. Senz, F. Süßaut, and U. Gösele, Nucl. Instrum. Meth. B 267, 1264 (2009).

    Article  CAS  ADS  Google Scholar 

  64. O. Moutanabbir, R. Scholz, S. Senz, U. Gösele, M. Chicoine, F. Schiettekatte, F. Süßkraut, and R. Krause-Rehberg, Appl. Phys. Lett. 93, 031916 (2008).

    Article  ADS  Google Scholar 

  65. O. Moutanabbir, S. Senz, R. Scholz, S. Christiansen, M. Reiche, A. Avramescu, U. Strauss, and U. Gösele, Electrochem. Solid State Lett. 12, H105 (2009).

    Article  CAS  Google Scholar 

  66. R. Singh, R. Scholz, S.H. Christiansen, and U. Gösele, Semicond. Sci. Technol. 23, 045007 (2008).

    Article  ADS  Google Scholar 

  67. R. Singh, R. Scholz, S.H. Christiansen, and U. Gösele, Phys. Stat. Sol. (a) 205, 2683 (2008).

    Article  CAS  ADS  Google Scholar 

  68. R. Singh, R. Scholz, S.H. Christiansen, and U. Goesele, Mater. Res. Soc. Proc. 1068, C01 (2008).

    Google Scholar 

  69. R. Singh, R. Scholz, U. Gösele, and S.H. Christiansen, Semicond. Sci. Technol. 22, 1200 (2007).

    Article  CAS  ADS  Google Scholar 

  70. R. Singh, R. Scholz, U. Gösele, and S.H. Christiansen, Mat. Res. Soc. Proc. 0957, K09-01 (2006).

    Google Scholar 

  71. K.D. Hobart and F.J. Kub, Electron. Lett. 35, 675 (1999).

    Article  CAS  Google Scholar 

  72. Y. Zheng, P. Moran, Z. Guan, S.S. Lau, D. Hansen, T. Kuech, T. Haynes, T. Hoechbauer, and M. Nastasi, J. Electron. Mater. 29, 916 (2000).

    Article  CAS  ADS  Google Scholar 

  73. S. Hayashi, M. Goorsky, A. Noori, and D. Bruno, J. Electrochem. Soc. 153, G1011 (2006).

    Article  CAS  Google Scholar 

  74. C. Miclaus, G. Malouf, S.M. Johnson, and M.S. Goorsky, J. Electron. Mater. 34, 859 (2005).

    Article  CAS  ADS  Google Scholar 

  75. W. Chen, P. Bandaru, C.W. Tang, K.M. Lau, T.F. Kuech, and S.S. Lau, Electrochem. Solid State Lett. 12, H149 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Singh.

Additional information

Dedicated to the memory of Prof. U. Gösele, who contributed significantly to the field of wafer bonding of semiconductors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Christiansen, S.H., Moutanabbir, O. et al. The Phenomenology of Ion Implantation-Induced Blistering and Thin-Layer Splitting in Compound Semiconductors. J. Electron. Mater. 39, 2177–2189 (2010). https://doi.org/10.1007/s11664-010-1334-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1334-x

Keywords

Navigation