Reaction Mechanism of Calcium Vanadate Formation in V-slag/CaO Diffusion System


Previously, we found that the inward diffusion of oxygen from the atmosphere to the interior of vanadium slag (V-slag) has a significant influence on the roasting reaction and may possibly be the dominant mechanism of this reaction. However, the existing reaction mechanism does not reflect the role of oxygen in calcification roasting. In view of this, the proposed study aims to verify the influence of oxygen using the diffusion couple technology, and propose the reaction equations involving oxygen describing the calcium vanadate formation from the surface to the interior of V-slag. The V-slag/CaO diffusion couples were prepared by vacuum hot-pressing, and diffusion experiments were performed under different oxygen partial pressures at a temperature of 1083 K. First, the surfaces in contact with the atmosphere (S(xz)) during roasting were analyzed by electron probe microanalysis (EPMA), Fourier transform-infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). Then, the diffusion couple was cut along a direction perpendicular to the V-slag/CaO interface and S(xz). The interior surface (S(xy)) was also analyzed by EPMA, FT-IR, and XRD. At S(xz), new phases were clearly observed in the vicinity of V-slag/CaO interface and characterized mainly as CaV2O6, Ca2V2O7, and Ca3V2O8. Moreover, the diffusion thickness of those new phases increased with the oxygen partial pressure. At S(xy), although relatively weak diffraction peaks and absorption bands of CaV2O6, Ca2V2O7, and Ca3V2O8 were detected, no distinct new phases were observed near the V-slag/CaO interface. Considering that the diffusion capacities of Ca and V at S(xz) and S(xy) cannot be evaluated based on the diffusion thickness, the use of interdiffusion coefficient was proposed to quantify the difference among the diffusion capacities. The average interdiffusion coefficients of Ca and V at S(xz) calculated as 1.02 × 10−8 and 0.91 × 10−8 cm2 s−1, respectively, were practically a hundred times these at S(xy). Following the conclusion that the calcium vanadate formation was governed by the inward oxygen diffusion, new reaction equations for describing the formation mechanism of calcium vanadate in calcification roasting were proposed. These equations, derived from the vacancy mechanism, express that the hoses and calcium vanadate are generated by Ca2+, V2O5, and O2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


S :

The surface of the diffusion couple

x and X :


C :


A :


D :

Interdiffusion coefficient

t :


k :



  1. 1.

    S. Gustafsson and W. Wang: Int. J. Miner. Process, 1985, vol. 15, pp. 103–15

    CAS  Article  Google Scholar 

  2. 2.

    B.C. Jena, W. Dresler, and I.G. Reilly: Miner. Eng., 1995, vol. 8, pp. 159–68.

    CAS  Article  Google Scholar 

  3. 3.

    H.Y. Li, H.X. Fang, K. Wang, W. Zhou, Z. Yang, X.M. Yan, W.S. Ge, Q.W. Li, and B. Xie: Hydrometallurgy, 2015, vol. 156, pp.124–35.

    CAS  Article  Google Scholar 

  4. 4.

    W.C. Song, K. Li, Q. Zheng, and H. Li: Waste Biomass Valori., 2014, vol. 5, pp.327–32.

    CAS  Article  Google Scholar 

  5. 5.

    G.B. Sadykhov: Russ. Metall., 2008, vol. 2008, pp.449–58.

    Article  Google Scholar 

  6. 6.

    Y.L. Ji, S.B. Shen, J.H. Liu, and Y. Xue: J. Clean. Prod., 2017, vol. 149, pp. 1068–78.

    CAS  Article  Google Scholar 

  7. 7.

    [W. Zhou, B. Xie, W.F. Tan, J. Diao, X. Zhang, and H.Y. Li: JOM, 2016, vol. 68, pp. 2520–24.

    CAS  Article  Google Scholar 

  8. 8.

    H.Y. Li, C.J. Wang, Y.H. Yuan, Y. Guo, J. Diao, B. Xie: J. Clean. Prod., 2020, vol. 260, p. 121091.

    CAS  Article  Google Scholar 

  9. 9.

    Z. Yang, H.Y. Li, X.C. Yin, Z.M. Yan, X.M. Yan, and B. Xie: Int. J. Miner. Process., 2014, vol. 133, pp. 105–11.

    CAS  Article  Google Scholar 

  10. 10.

    P. Cao: Iron Steel Vanadium Titanium, 2012, vol. 3(a), pp. 30–34.

  11. 11.

    J.H. Zhang, W. Zhang, L. Zhang, and S.Q. Gu: Int. J. Miner. Process., 2015, vol. 138, pp. 20–29.

    CAS  Article  Google Scholar 

  12. 12.

    M. Li, B. Liu, S.L. Zheng, S.N. Wang, H. Du, D.B. Dreisinger, and Y. Zhang: J. Clean. Prod., 2017, vol. 149, pp. 206–17.

    CAS  Article  Google Scholar 

  13. 13.

    L.Y. Liu, T. Du, W.J. Tan, X.P. Zhang, and F. Yang: Int. J. Miner. Metall. Mater., 2016, vol. 23(2), pp. 156–60.

    CAS  Article  Google Scholar 

  14. 14.

    B. Liu, L.P. Meng, S.L. Zheng, M. Li, S.N. Wang: Physicochem. Probl. MI., 2017, vol. 54, pp. 657–67.

    Google Scholar 

  15. 15.

    H.R. Yue and X.X. Xue: J. Hazard. Mater., 2020, vol. 393, p. 122368.

    CAS  Article  Google Scholar 

  16. 16.

    R. Sarkar, B.P. Nash, and H.Y. Sohn (2020) Ceram. Int., 46(6), pp. 7204–17.

    CAS  Article  Google Scholar 

  17. 17.

    S. Mackwell, M. Bystricky, and C. Sproni: Phys. Chem. Miner., 2005, vol. 32, pp. 418–25.

    CAS  Article  Google Scholar 

  18. 18.

    B. Wierzba and W. Skibiński: J. Alloy. Compd., 2016, vol. 687, pp. 104–08.

    CAS  Article  Google Scholar 

  19. 19.

    C. Heiligers, C.J. Pretorius, and J.H. Neethling: Int. J. Refract. Met. H., 2012, vol. 31, pp. 51–55.

    CAS  Article  Google Scholar 

  20. 20.

    H. Fukuyama, K. Hossain, and K. Nagata: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 257–64.

    CAS  Article  Google Scholar 

  21. 21.

    T. Jiang, J. Wen, M. Zhou, XX Xue (2018) J. Alloys. Compd., 742, 402–12.

    CAS  Article  Google Scholar 

  22. 22.

    N.Y. Mostafa, E.A. Kishar, and S.A. Abo-El-Enein: J. Alloys Compd., 2009, vol. 473, pp. 538–42.

    CAS  Article  Google Scholar 

  23. 23.

    H. Ye, X. Liu, and H. Hong: J. Mater. Sci.: Mater. Med., 2009, vol. 20, pp. 843–50.

    CAS  Google Scholar 

  24. 24.

    L. Chen, Y. Kaneko, N. Ayuzawa, and T. Suzuki: J. Ion Exchange, 1999, vol. 10, pp. 2–7.

    CAS  Article  Google Scholar 

  25. 25.

    V.B. Taxak, S. Dayawati, and S.P. Khatkar: Curr. Appl. Phys., 2013, vol. 13, pp. 594–98.

    Article  Google Scholar 

  26. 26.

    P. Parhi, V. Manivannan, S. Kohli, and P. Mccurdy: Bull. Mater. Sci., 2008, vol. 31, pp. 885–90.

    CAS  Article  Google Scholar 

  27. 27.

    G. Bakradze, L.P.H. Jeurgens, T. Acarturk, U. Starke, and E.J. Mittemeijer: Acta Mater., 2011, vol. 59, pp. 7498-7507.

    CAS  Article  Google Scholar 

  28. 28.

    JH Zhang, W Zhang, ZL Xue (2017) Min. Proc. Ext. Met. Rev., 38, 256-73.

    Google Scholar 

  29. 29.

    [29] H.R. Yue and X.X. Xue: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2358–70.

    Article  Google Scholar 

  30. 30.

    X.S Li, B. Xie, G.E. Wang, X.H Li (2011) Trans. Nonferrous Met. Soc. China 1, 1860–67.

    Article  Google Scholar 

  31. 31.

    X.Z. Gong, B. Zhang, Z. Wang, and Z.C. Guo: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2050–56.

    Article  Google Scholar 

  32. 32.

    K.N. Goswami and A. Mottura: Mat. Sci. Eng. A-Struct., 2019, vol. 743, pp. 256–73.

    Article  Google Scholar 

  33. 33.

    [33] Z.P. Lin, L.L. Bai, X. Zhang, H.F. Dong, and F.G. Wu: J. Magn. Magn. Mater., 2018, vol. 468, pp. 164–67.

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the National Science Foundation of China (Grant Nos. 51674084 and U1502273) and the Fundamental Research Funds for the Central Universities (Grant No. 182503035).

Author information



Corresponding author

Correspondence to Xiang-Xin Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 17, 2020; accepted December 20, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yue, HR., Xue, XX. & Zhang, WJ. Reaction Mechanism of Calcium Vanadate Formation in V-slag/CaO Diffusion System. Metall Mater Trans B (2021).

Download citation