Skip to main content
Log in

Mixing Characteristics of Additives in Viscous Liquid BOF Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The mixing behavior of compositional modifiers into viscous liquid BOF slag was studied using fluid flow modeling under industrially relevant conditions. The Volume of Fluid-Large Eddy Simulation-Discrete Phase Model was used to simulate the gas-solid particle-liquid slag turbulent flow. The area fraction of the particle migration zone was calculated to quantify the mixing process. The results show that increasing gas flow rate and/or depth of lance submergence can shrink the quiescent region at the bottom of the slag pot, shortening the mixing process. Influence of the lance submergence depth is more significant on the particle mixing process. The input energy flux can be used as a measure to quantitatively evaluate the mixing behavior. Additionally, it was confirmed that increasing the slag viscosity prolongs the mixing process. Particle size in the range that was studied has little influence on the particle migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\( a_{1} \), \( a_{2} \), \( a_{3} \) :

Constants in drag coefficient for spherical particle

\( A \) :

Cross-section area of lance (m2)

\( A_{\text{p}} \) :

Area of the particle migration zone, (m2)

\( A_{\text{s}} \) :

Area of the slag phase in the slag pot, (m2)

\( C_{\text{d}} \) :

Drag coefficient

\( C_{\text{s}} \) :

Model constant in LES-DSL model

\( C_{\text{VM}} \) :

Virtual mass factor, 0.5

\( d_{ij} \), \( d_{kl} \), \( d_{lk} \) :

Deformation tensor (s−1)

\( d_{\text{p}} \) :

Particle diameter (mm)

\( E_{\text{In}} \) :

Input energy flux accompanied with the gas phase [kJ/(m2 s)]

\( E_{\text{ke}} \) :

Power input from gas kinetic energy (W)

\( F_{\text{int}} \) :

Interphase force (N)

\( F_{\text{D}} \) :

Drag force (N)

\( F_{\text{L}} \) :

Lift force (N)

\( F_{\text{VM}} \) :

Virtual mass force (N)

\( {\text{Fr}}_{\text{m}} \) :

Modified Froude number

\( g \) :

Gravitational acceleration (m/s2)

\( k \) :

Constant coefficient in lift force, 2.594

\( K \) :

Curvature (1/m)

\( l \) :

Depth of lance submergence (m)

\( l_{\text{s}} \) :

Characteristic length of the system (m)

\( m \) :

Particle mass (kg)

\( \dot{n} \) :

Molar flow rate (mol/s)

\( p \) :

Pressure (Pa)

\( p_{\text{a}} \) :

Atmosphere pressure (Pa)

\( Q_{\text{a}} \) :

Gas flow rate at \( P_{\text{a}} \) and slag temperature (m3/s)

\( Q_{\text{g}} \) :

Injected gas flow rate (Nm3/s)

\( R \) :

Gas constant [8.314 J/(mol K)]

\( \text{Re} \) :

Reynolds number

\( S \) :

Source term in the momentum equation

\( {\text{St}} \) :

Stokes number

\( t \) :

Time (s)

\( T \) :

Particle migration time (s)

\( T_{\text{in}} \) :

Temperature of the gas phase entering the slag pot (K)

\( T_{\text{s}} \) :

Slag temperature (K)

\( u \) :

Velocity, m/s

\( v \) :

Particle velocity, m/s

\( v_{\text{s}} \) :

Characteristic velocity of the system (m/s)

\( V_{\text{p}} \) :

Particle volume (mm3)

\( \alpha \) :

Phase volume fraction

\( \beta \) :

Particle loading ratio

\( \eta_{1} \) :

Conversion efficiency of the gas kinetic power

\( \eta_{2} \) :

Conversion efficiency of the gas buoyancy power due to heating

\( \mu \) :

Dynamic viscosity of the fluid (Pa s)

\( \nu \) :

Kinematic viscosity of the fluid (m2/s)

\( \rho \) :

Density (kg/m3)

\( \sigma \) :

Surface tension coefficient

\( \bar{\tau } \) :

Stress tensor (N/m2)

\( \varPhi \) :

Area fraction of the particle migration zone (Pct)

g:

Gas phase

l:

Liquid slag phase

p:

Solid particle phase

References

  1. H. Motz and J. Geiseler: Waste Manage., 2001, vol. 21, pp. 285-293.

    Article  CAS  Google Scholar 

  2. R. Dippenaar: Ironmak. Steelmak., 2005, vol. 32, pp. 35-46.

    Article  CAS  Google Scholar 

  3. H. Shen and E. Forssberg: Waste Manage., 2003, vol. 23, pp. 933-949.

    Article  CAS  Google Scholar 

  4. H. Yi, G. Xu, H. Cheng, J. Wang, Y. Wan and H. Chen: Procedia Environ. Sci., 2012, vol. 16, pp. 791-801.

    Article  CAS  Google Scholar 

  5. S.A. Mikhail and A.M. Turcotte: Thermochim. Acta, 1995, vol. 263, pp. 87-94.

    Article  CAS  Google Scholar 

  6. G. Wang, Y. Wang and Z. Gao: J. Hazard. Mater., 2010, vol. 184, pp. 555-560.

    Article  CAS  Google Scholar 

  7. G. Li: 1st International Slag Valorisation Symposium, Leuven, Belgium, 2009, pp. 165-176.

    Google Scholar 

  8. G. Li and M. Guo: Waste Biomass Valor., 2014, vol. 5, pp. 317-325.

    Article  CAS  Google Scholar 

  9. M. Kühn, P. Drissen, and H. Schrey: 2nd European Slag Conference, Düsseldorf, Germany, 2000, pp. 123-135.

  10. J. Sichien: 5th European Slag Conference, Luxembourg, 2007.

  11. D. Durinck, F. Engström, S. Arnout, J. Heulens, P.T. Jones, B. Björkman, B. Blanpain and P. Wollants: Resour. Conserv. Recy. 2008, vol. 52, pp. 1121-1131.

    Article  Google Scholar 

  12. A.N. Conejo, S. Kitamura, N. Maruoka and S.-J. Kim: Metall. Mater. Trans. B, 2013, vol. 44, pp. 914-923.

    Article  Google Scholar 

  13. M. Madan, D. Satish and D. Mazumdar: ISIJ Int., 2005, vol. 45, pp. 677-685.

    Article  CAS  Google Scholar 

  14. L. Li, Z. Liu, B. Li, H. Matsuura and F. Tsukihashi: ISIJ Int., 2015, vol. 55, pp. 1337-1346.

    Article  CAS  Google Scholar 

  15. S.W.P. Cloete, J.J. Eksteen and S.M. Bradshaw: Miner. Eng., 2013, vol. 46, pp. 16-24.

    Article  Google Scholar 

  16. E. Delnoij, J.A.M. Kuipers and W.P.M. van Swaaij: Chem. Eng. Sci., 1997, vol. 52, pp. 3623-3638.

    Article  CAS  Google Scholar 

  17. N.G. Deen, M. Van-Sint-Annaland, M.A. Van-der-Hoef and J.A.M. Kuipers: Chem. Eng. Sci., 2007, vol. 62, pp. 28-44.

    Article  CAS  Google Scholar 

  18. Y. Wang, Z. Liu, L. Cao, B. Blanpain and M. Guo: Chem. Eng. Sci., 2019, vol. 207, pp. 172-180.

    Article  CAS  Google Scholar 

  19. Y. Wang, M. Vanierschot, L. Cao, Z. Cheng, B. Blanpain and M. Guo: Chem. Eng. Sci., 2018, vol. 192, pp. 1091-1104.

    Article  CAS  Google Scholar 

  20. M.T. Dhotre, B. Niceno and B.L. Smith: Chem. Eng. J., 2008, vol. 136, pp. 337-348.

    Article  CAS  Google Scholar 

  21. Y. Wang, L. Cao, M. Vanierschot, Z. Cheng, B. Blanpain and M. Guo: Chem. Eng. Sci., 2020, vol. 212, pp. 115359.

    Article  Google Scholar 

  22. D.L. Youngs: Numer. Methods Fluid Dyna., 1982, vol. 24, pp. 273-285.

    Google Scholar 

  23. H. Yang, J. Wolters, P. Pischke, H. Soltner, S. Eckert, and J. Fröhlich: 12th International Conference on CFD in Oil&Gas, Metallurgical and Process Industries, Trondheim, Norway, 2017, pp. 355–63.

  24. ANSYS Inc., Ansys Theory Guide 16.2, 2015.

  25. J.U. Brackbill, D.B. Kothe and C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335-354.

    Article  CAS  Google Scholar 

  26. M. Germano, U. Piomelli, P. Moin and W.H. Cabot: Phys. Fluids A, 1991, vol. 3, pp. 1760-1765.

    Article  Google Scholar 

  27. D.K. Lilly: Phys. Fluids A, 1992, vol. 4, pp. 633-635.

    Article  Google Scholar 

  28. ANSYS FLUENT 16.2, ANSYS Inc., Canonsburg, PA, 2015.

  29. W. Sutherland: Philos. Mag. Series 5, 1893, vol. 223, pp. 507-31.

  30. ANSYS ICEM CFD, ANSYS Inc., Canonsburg, PA, 2015.

  31. J.P. Van Doormaal and G.D. Raithby: Numer. Heat Transfer, 1984, vol. 7, pp. 147-163.

    Google Scholar 

  32. Image-Pro Plus v6.0, Media Cybernetics Inc., MD, 2006.

  33. M.P. Schwarz: ISIJ Int., 1991, vol. 31, pp. 947-951.

    Article  CAS  Google Scholar 

  34. L.H. Lehrer: I & EC Process Design & Development, 1968, vol. 7, pp. 226-239.

    Article  CAS  Google Scholar 

  35. J.H. Wei, J.C. Ma, Y.Y. Fan, N. Yu, S.L. Yang, S.H. Xiang and D.P. Zhu: Ironmak. Steelmak., 1999, vol. 26, pp. 363-371.

    Article  CAS  Google Scholar 

  36. J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain and P. Wollants: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1961-1972.

    Article  CAS  Google Scholar 

  37. X. Guo, Z. Sun, J. Van Dyck, M. Guo and B. Blanpain: Ind. Eng. Chem. Res., 2014, vol. 53, pp. 6325-6333.

    Article  CAS  Google Scholar 

  38. K.H. Sandhuge and G.J. Yurek: J. Am. Ceram. Soc., 1990, vol. 73, pp. 3643-3649.

    Article  Google Scholar 

  39. M. Sharma, W. Mu and N. Dogan: JOM, 2018, vol. 70, pp. 1220-1224.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors highly acknowledge the financial support from an IWT Project 140514 (Belgium). Yannan Wang would like to give his thanks to the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 11, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cao, L., Cheng, Z. et al. Mixing Characteristics of Additives in Viscous Liquid BOF Slag. Metall Mater Trans B 51, 2147–2158 (2020). https://doi.org/10.1007/s11663-020-01892-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01892-y

Navigation