Fine-Tuned Element Transfer Strategies for Ternary CaF2-SiO2-CaO Fluxes in Submerged Arc Welding: An Environmentally Friendly Approach

Abstract

Submerged arc welding under high heat input has been conducted on EH36 plate employing two series of CaF2-SiO2-CaO-fused fluxes. The effects of CaO and SiO2 on element transfer between slag and weld metal are systematically evaluated using thermodynamics. It is concluded that the substitution of CaF2 by CaO is an environmentally friendly approach to suppress the transfer of Si to weld metal and decrease the loss of Mn from weld metal to slag.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    1. S. Kou: Welding Metallurgy, 2nd ed.,Wiley & Sons, New York, NY, 2003, pp. 22–95.

    Google Scholar 

  2. 2.

    2. N. Murugan and V. Gunaraj: J. Mater. Process. Technol., 2005, vol. 168, pp. 478–487.

    CAS  Article  Google Scholar 

  3. 3.

    3. J. Zhang, J. Leng and C. Wang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2083–2087.

    Article  Google Scholar 

  4. 4.

    4. U. Mitra and T. Eagar: Metall. Trans. B, 1991, vol. 22, pp. 73–81.

    CAS  Article  Google Scholar 

  5. 5.

    5. N. Pandey, A. Bharti and S. Gupta: J. Mater. Process. Technol., 1994, vol. 40, pp. 195–211.

    Article  Google Scholar 

  6. 6.

    6. K. Bang, C. Park, H. Jung and J. Lee: Met. Mater. Int., 2009, vol. 15, pp. 471–477.

    CAS  Article  Google Scholar 

  7. 7.

    7. D. Olson, S. Liu, R. Frost, G. Edwards and D. Fleming: Nature and Behavior of Fluxes Used for Welding, ASM Handbook, Materials Park, OH, 1993, vol. 6, pp. 43–54.

    Google Scholar 

  8. 8.

    8. C. Natalie, D. Olson and M. Blander: Ann. Rev. Mater. Sci., 1986, vol. 16, pp. 389–413.

    CAS  Article  Google Scholar 

  9. 9.

    9. J. Indacochea, M. Blander, N. Christensen and D. Olson: Metall. Trans. B, 1985, vol. 16, pp. 237–245.

    CAS  Article  Google Scholar 

  10. 10.

    10. J. Zhang, T. Coetsee and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 16–21.

    Article  Google Scholar 

  11. 11.

    11. P. Burck, J. Indacochea and D. Olson: Weld. J., 1990, vol. 3, pp. 115–122.

    Google Scholar 

  12. 12.

    12. C. Chai and T. Eagar: Metall. Trans. B, 1981, vol. 12, pp. 539–547.

    Article  Google Scholar 

  13. 13.

    13. D. Abson and R. Pargeter: Int. Met. Rev., 1986, vol. 31, pp. 141–196.

    CAS  Article  Google Scholar 

  14. 14.

    14. R. Farrar and P. Harrison: J. Mater. Sci. 1987, vol. 22, pp. 3812–3820.

    CAS  Article  Google Scholar 

  15. 15.

    15. C. Chai: Slag-Metal Reactions during Flux Shielded Arc Welding, Massachusetts Institute of Technology, Cambridge, MA, 1980.

    Google Scholar 

  16. 16.

    16. C. Chai and T. Eagar: Weld. J., 1982, vol. 61, pp. 229–232.

    Google Scholar 

  17. 17.

    17. P. Kanjilal, T. Pal and S. Majumdar: Weld. J., 2007, vol. 10, p. 135–146.

    Google Scholar 

  18. 18.

    18. E. Andersson and D. Sichen: Steel Res. Int., 2009, vol. 80, pp. 544–551.

    CAS  Google Scholar 

  19. 19.

    19. T. North, H. Bell, A. Nowicki and I. Craig: Weld. J., 1978, vol. 57, p. 63–57.

    Google Scholar 

  20. 20.

    20. C. Dallam, S. Liu and D. Olson: Weld. J., 1985, vol. 64, pp. 140–151.

    Google Scholar 

  21. 21.

    21. B. Kim, S. Uhm, C. Lee, J. Lee and Y. An: J. Eng. Mater. Technol., 2005, vol. 127, pp. 204–213.

    CAS  Article  Google Scholar 

  22. 22.

    J. Jorge, L. de Souza, E. Marouco, O. dos Santos Filho and J. Diniz: Weld. Int., 2017, vol. 31, pp. 499–508.

  23. 23.

    J. Zhang, T. Coetsee, H. Dong and C. Wang: Metall. Mater. Trans. B, 2020, DOI: 10.1007/s11663-020-01821-z.

    Article  Google Scholar 

  24. 24.

    24. J. Indacochea and D. Olson: J. Mater. Energy Syst., 1983, vol. 5, pp. 139–148.

    CAS  Article  Google Scholar 

  25. 25.

    25. A. Polar, J. Indacochea and M. Blander: Weld. J., 1990, vol. 69, pp. 69–74.

    Google Scholar 

  26. 26.

    26. G. Belton, T. Moore and E. Tankins: Weld. J., 1963, vol. 42, pp. 289–297.

    Google Scholar 

  27. 27.

    27. I. Sommerville and D. Kay: Metall. Trans., 1971, vol. 2, pp. 1727–1732.

    CAS  Google Scholar 

  28. 28.

    28. D. Gery, H. Long and P. Maropoulos: J. Mater. Process. Technol., 2005, vol. 167, pp. 393–401.

    CAS  Article  Google Scholar 

Download references

We thank the National Natural Science Foundation of China (Grant Nos. 51622401, 51861130361, 51861145312, and 51850410522), Newton Advanced Fellowship by the Royal Society (Grant No. RP12G0414), Research Fund for Central Universities (Grant No. N172502004), Xingliao Talents Program (XLYC1807024 and XLYC1802024), Liaoning Key Industrial Program (2019JH1/10100014), The Innovation Team of Northeastern University, and Global Talents Recruitment Program endowed by the Chinese government for their financial support. We thank the State Key Laboratory of Solidification Processing, Northwestern Polytechnical University (Grant No. SKLSP201805), Shagang Steel, and Lincoln Electric China. This work is also funded in part by the National Research Foundation of South Africa (BRICS171211293679).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 29, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Coetsee, T., Dong, H. et al. Fine-Tuned Element Transfer Strategies for Ternary CaF2-SiO2-CaO Fluxes in Submerged Arc Welding: An Environmentally Friendly Approach. Metall Mater Trans B (2020). https://doi.org/10.1007/s11663-020-01879-9

Download citation