Computational Fluid Dynamics Study of the Thermochemical Behaviors in an Ironmaking Blast Furnace with Oxygen Enrichment Operation


The ironmaking blast furnace (BF) is an energy-intensive process, requires a considerable amount of carbon-related materials such as coke, coal, or natural gas, and releases enormous amounts of greenhouse gas (GHG). The oxygen enrichment operation is one promising technology to reduce the carbon footprint in the ironmaking process. However, the oxygen enrichment ratio (OER) varies significantly in practices, and the proper one is still unclear, especially in terms of fuel rate saving and in-furnace phenomena. In this study, a multi-fluid BF model is used to quantitatively study the influence of oxygen enrichment on the BF process in terms of bosh gas volume, top gas composition, and inner thermochemical behaviors of solid–gas–liquid phases. Under the simulation conditions, the results show that for every increase of OER, the blast rate is decreased by ~ 85 m3/min and nitrogen content in reducing gas is decreased by ~ 1.13 pct; also, the top gas temperature is lowered by ~ 17 K, and the flame temperature is increased by 58.4 K. Descending of cohesive zone (CZ) inside the BF is observed with the region volume ratio decreased by ~ 0.102; the chemical reserve zone of wustite becomes much narrower and lower inside the BF, but does not disappear. The potential of carbon footprint mitigation in the BF process is discussed with the optimal OER recommended, 7.5 pct under the present simulation conditions. This model can help to build a comprehensive understanding of the fuel rate saving and CO2 emission reduction of a BF adopting an oxygen enrichment operation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    K. Kanbara, T. Hagiwara, A. Shigemi, S. Kondo, Y. Kanayama, K. Wakabayashi, and N. Hiramoto: Tetsu-to-Hagané, 1976, vol. 62, pp. 535-46.

    CAS  Article  Google Scholar 

  2. 2.

    K. Kojima, T. Nist, T. Yamaguchi, H. Nakama, and S. Ida: Tetsu-to-Hagané, 1976, vol. 62, pp. 570-9.

    CAS  Article  Google Scholar 

  3. 3.

    K. Sasaki, M. Hatano, M. Watanabe, T. Shimoda, K. Yokotani, T. Ito, and T. Yakoi: Tetsu-to-Hagané, 1976, vol. 62, pp. 580-91.

    Article  Google Scholar 

  4. 4.

    M. SasakiI, K. Ono, A. Suzuki, Y. Okuno, K. Yoshizawa, and T. Nakamura: Tetsu-to-Hagané, 1976, vol. 62, pp. 559-69.

    Article  Google Scholar 

  5. 5.

    Y. Shimomura, K. Nishikawa, S. Arino, T. Katayama, Y. Hida, and T. Isoyama: Tetsu-to-Hagané, 1976, vol. 62, pp. 547-58.

    CAS  Article  Google Scholar 

  6. 6.

    C. Wang, C. Ryman, and J. Dahl: Int J Greenh Gas Con, 2009, vol. 3, pp. 29-38.

    CAS  Article  Google Scholar 

  7. 7.

    X. Liang, Q. Lin, H. Muslemani, M. Lei, Q. Liu, J. Li, A. Wu, M. Liu, and F. Ascui: Energy Procedia, 2019, vol. 158, pp. 3715-22.

    Article  Google Scholar 

  8. 8.

    R.G.D. Pinto, A.S. Szklo, and R. Rathmann: Energ Policy, 2018, vol. 114, pp. 380-93.

    Article  Google Scholar 

  9. 9.

    T. Kuramochi: J Clean Prod, 2017, vol. 147, pp. 668-80.

    Article  Google Scholar 

  10. 10.

    T. Kuramochi: J Clean Prod, 2016, vol. 132, pp. 81-97.

    CAS  Article  Google Scholar 

  11. 11.

    H. Nogami, Y. Kashiwaya, and D. Yamada: Tetsu-to-Hagané, 2014, vol. 100, pp. 251-5.

    CAS  Article  Google Scholar 

  12. 12.

    J.A.D. Castro, C. Takano, and J. Yagi: Journal of Materials Research and Technology, 2017, vol. 6, pp. 258-70.

    Article  CAS  Google Scholar 

  13. 13.

    H. Nogami, Y. Kashiwaya, and D. Yamada: ISIJ International, 2012, vol. 52, pp. 1523-7.

    CAS  Article  Google Scholar 

  14. 14.

    L. Bergman, M. Larsson, J.O. Wikström, L.S. Ökvist, G. Zuo, and B. Jansson: Scanmet II, MEFOS, 2008, vol. 2, pp. 369-78.

    Google Scholar 

  15. 15.

    G. Danloy, A. Berthelemot, M. Grant, J. Borlee, D. Sert, J. van der Stel, H. Jak, V. Dimastromatteo, M. Hallin, N. Eklund, N. Edberg, L. Sundqvist, B.E. Skoeld, R. Lin, A. Feiterna, B. Korthas, F. Muller, C. Feilmayr, and A. Habermann: Revue de Métallurgie–Int. J. Metall., 2009, vol. 106, pp. 1-8.

    CAS  Article  Google Scholar 

  16. 16.

    H. Yamaok and Y. Kame: Tetsu-to-Hagané, 1991, vol. 77, pp. 2099-106.

    Article  Google Scholar 

  17. 17.

    Y. Ohno, M. Matsuura, H. Mitsufuji, and T. Furukawa: ISIJ International, 1992, vol. 32, pp. 838-47.

    CAS  Article  Google Scholar 

  18. 18.

    Y. Qi, D. Yan, J. Gao, J. Zhang, and M. Li: Iron and Steel, 2011, vol. 46, pp. 6-8.

    CAS  Google Scholar 

  19. 19.

    T. Miyashita and M. Ohtsuki: Tetsu-to-Hagané, 1971, vol. 57, pp. 2184-96.

    CAS  Article  Google Scholar 

  20. 20.

    H. Yamaok and Y. Kame: ISIJ International, 1992, vol. 32, pp. 709-15.

    Article  Google Scholar 

  21. 21.

    D.D. Zhou, K. Xu, G. Xu and X. Jiang: Ironmak. Steelmak., 2020, vol. 3, pp. 316-21.

    Article  CAS  Google Scholar 

  22. 22.

    E. Mousa, M. Lundgren, L. Sundqvist Ökvist, L.-E. From, A. Robles, S. Hällsten, B. Sundelin, H. Friberg, and A. El-Tawil: J. Sustain. Met., 2019, vol. 5, pp. 391-401.

    Article  Google Scholar 

  23. 23.

    Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: Metall. Mater. Trans. B, 2016, vol. 47, pp. 467-84.

    Article  CAS  Google Scholar 

  24. 24.

    H. Yamaok and Y. Kame: ISIJ International, 1992, vol. 32, pp. 701-8.

    Article  Google Scholar 

  25. 25.

    P. Jin, Z. Jiang, C. Bao, Y. Lu, J. Zhang, and X. Zhang: Steel Res. Int., 2016, vol. 87, pp. 320-9.

    CAS  Article  Google Scholar 

  26. 26.

    Z. Li, S. Kuang, A. Yu, J. Gao, Y. Qi, D. Yan, Y. Li, and X. Mao: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1995-2010.

    Article  CAS  Google Scholar 

  27. 27.

    W. Zhang, Z. Xue, J. Zhang, W. Wang, C. Cheng, and Z. Zou: J. Iron Steel Res.Int., 2017, vol. 24, pp. 778-86.

    Article  Google Scholar 

  28. 28.

    H. Helle, M. Helle, H. Saxén, and F. Pettersson: ISIJ international, 2010, vol. 50, pp. 931-8.

    CAS  Article  Google Scholar 

  29. 29.

    L. Liu, Z. Jiang, X. Zhang, Y. Lu, J. He, J. Wang, and X. Zhang: Energy, 2018, vol. 163, pp. 144-50.

    CAS  Article  Google Scholar 

  30. 30.

    X. Yu and Y. Shen: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2238-50.

    Article  CAS  Google Scholar 

  31. 31.

    X. Yu and Y. Shen: Chem. Eng. Sci., 2019, vol. 199, pp. 50-63.

    CAS  Article  Google Scholar 

  32. 32.

    P.R. Austin, H. Nogami, and J.I. Yagi: ISIJ international, 1998, vol. 38, pp. 239-45.

    CAS  Article  Google Scholar 

  33. 33.

    M. Chu, H. Nogami, and J.I. Yagi: ISIJ International, 2004, vol. 44, pp. 2159-67.

    CAS  Article  Google Scholar 

  34. 34.

    Shen, Y., Guo, B., Chew, S., Austin, P., and Yu, A.: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1052-62.

    Article  CAS  Google Scholar 

  35. 35.

    Hao, X., Shen, F., Du, G., Shen, Y., and Xie, Z.: Steel Res. Int., 2005, vol. 76, pp. 694-9.

    CAS  Article  Google Scholar 

  36. 36.

    Shen, Y., Yu, A., and Zulli, P.: Steel Res. Int., 2011, vol. 82, pp. 532-42.

    CAS  Article  Google Scholar 

  37. 37.

    Shen, Y.S., Guo, B.Y., Yu, A.B., and Zulli, P.: Fuel, 2009, vol. 88, pp. 255-63.

    CAS  Article  Google Scholar 

  38. 38.

    P. Austin, Ph.D. thesis, Tohokudai, 1997.

  39. 39.

    M. Geerdes, R. Chaigneau, and I. Kurunov, Modern Blast Furnace Ironmaking: An Introduction, Ios Press, Netherlands, 2015, p. 16.

    Google Scholar 

  40. 40.

    Z. Li and W. Jiang: Baosteel Tech. Res., 2016, vol. 5, pp. 70-3.

    Google Scholar 

  41. 41.

    M.A. Tseitlin, S.E. Lazutkin, and G.M. Styopin: ISIJ International, 1994, vol. 34, pp. 570-3.

    CAS  Article  Google Scholar 

  42. 42.

    T. Ariyama and M. Sato: ISIJ International, 2006, vol. 46, pp. 1736-44.

    CAS  Article  Google Scholar 

  43. 43.

    M. Arens, E. Worrell, W. Eichhammer, A. Hasanbeigi, and Q. Zhang: J Clean Prod, 2017, vol. 163, pp. 84-98.

    CAS  Article  Google Scholar 

  44. 44.

    T. Ariyama, R. Murai, J. Ishii, and M. Sato: ISIJ International, 2005, vol. 45, pp. 1371-8.

    CAS  Article  Google Scholar 

  45. 45.

    X. Yu and Y. Shen: Powder Technol., 2020, vol. 361, pp. 124-35.

    CAS  Article  Google Scholar 

  46. 46.

    X. Yu and Y. Shen: Energy & Fuels, 2019, vol. 33, pp.11603-16.

    CAS  Article  Google Scholar 

  47. 47.

    D.S. Gupta, J.D. Litster, V.R. Rudolph, E.T. White, and A. Domanti: ISIJ International, 1996, vol. 36, pp. 32-9.

    CAS  Article  Google Scholar 

  48. 48.

    W.E. Ranz and W.R. Marshall: Chem. Eng. Prog., 1952, vol. 48, pp. 141-6.

    CAS  Google Scholar 

  49. 49.

    E.R.G. Eckert and R.M. Drake, Heat and Mass Transfer, 2nd ed., McGrawHill, New York, 1959.

    Google Scholar 

  50. 50.

    P.J. Mackey and N.A. Warner: Metal. Trans., 1972, vol. 3, pp. 1807-16.

    CAS  Article  Google Scholar 

  51. 51.

    X.F. Dong, A.B. Yu, S.J. Chew, and P. Zulli: Metall. Mater. Trans. B, 2010, vol. 41, pp. 330-49.

    CAS  Article  Google Scholar 

  52. 52.

    X. Yu and Y. Shen: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2370-88.

    Article  CAS  Google Scholar 

  53. 53.

    Y. Omori, Blast Furnace Phenomena and Modelling, Elsevier Applied Science, London and New York, 1987, p.498.

    Google Scholar 

  54. 54.

    I. Muchi: TRANS ISIJ., 1976, vol. 7, pp. 223-37.

    Article  Google Scholar 

Download references


The authors acknowledge the financial support from the Australian Research Council (Grant No. LP160101100) and Coal Energy Australia and useful discussion with Baosteel. The first author acknowledges the financial support from the China Scholarship Council.

Author information



Corresponding author

Correspondence to Yansong Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 18, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Shen, Y. Computational Fluid Dynamics Study of the Thermochemical Behaviors in an Ironmaking Blast Furnace with Oxygen Enrichment Operation. Metall Mater Trans B (2020).

Download citation