Lanthanothermic Reduction of TiO2

Abstract

The development of a new titanium (Ti) smelting process is highly desired to decrease the cost of Ti metal. In this study, a new method to produce a low-oxygen-concentration Ti directly from TiO2 using La as the reductant was developed. First, deoxidation experiments of metallic Ti using La as the deoxidant were conducted, and the ability of La to deoxidize metallic Ti was demonstrated. The oxygen concentrations in Ti were approximately 3900 ± 400 mass ppm O and 120 ± 50 mass ppm O at La/La2O3 and La/LaOCl/LaCl3 equilibria, respectively, at 1200 K (927 °C). Then, TiO2 reduction experiments utilizing La as the reductant were conducted to produce low-oxygen-concentration Ti directly. TiO2 pellets and Ti pieces were held in LaCl3 molten salt with a sufficient amount of La at 1200 K (927 °C) for 86 ks. After the reaction, the TiO2 pellets were reduced to metallic Ti without reaction inhibition by the formation of intermediate products. The oxygen concentration of the Ti pieces, which were placed in the molten salt with the TiO2 pellets, was 100 ± 50 mass ppm O. These results indicate that low-oxygen-concentration Ti containing less than 200 mass ppm O could be produced directly from TiO2 by utilizing La as the reductant in LaCl3 molten salt at 1200 K (927 °C). This new method is expected to lead to the development of a new industrial process for the production of ultra-low-oxygen-content Ti from Ti ore without a chlorination process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    W. Kroll: Trans. Electrochem. Soc., 1940, vol. 78, pp. 35-47.

    Article  Google Scholar 

  2. 2.

    T.H. Okabe: J. Jpn. Inst. Light Met., 2005, vol. 55, pp. 537-43.

    Article  Google Scholar 

  3. 3.

    O. Kubaschewski and W.A. Dench: J. Inst. Metals, 1953-54, vol. 82, pp. 87–91.

  4. 4.

    K.L. Komarek and M. Silver: Proc. IAEA Symp., Thermodynamics of Nuclear Materials, Wien, 1962, pp. 749–74.

  5. 5.

    T.H. Okabe, C. Zheng, and Y. Taninouchi: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1056-66.

    Article  Google Scholar 

  6. 6.

    F.M. Perkin and L. Pratt: Trans. Faraday Soc., 1907, Vol. 3, pp. 179-86.

    Article  Google Scholar 

  7. 7.

    M. Hasegawa: J. Jpn. Inst. Met. A, 1950, vol. 14, pp. 23-26.

    Article  Google Scholar 

  8. 8.

    M.E. Sibert and M.A. Steinberg: J. Met., 1956, vol. 8, pp. 1162-68.

    Google Scholar 

  9. 9.

    T. A. Henrie: High Temp. Refrac Met., 1968, vol. 34, pp. 139-54.

    Google Scholar 

  10. 10.

    T. Oki and H. Inoue: Mem. Fac. Eng., Nagoya Univ., 1967, vol. 19, pp. 164–66.

  11. 11.

    F. H. Hayes, H. B. Bomberger, F. H. Froes, L. Kaufman, and H. M. Burte: J. Met. (JOM), 1984, vol. 36, pp. 70–76.

    Google Scholar 

  12. 12.

    K. Ono and S. Miyazaki: J. Jpn. Inst. Met., 1985, vol. 49, pp. 871–75.

    Article  Google Scholar 

  13. 13.

    K. Ono, M. Ogawa, T.H. Okabe, and R.O. Suzuki: Tetsu to Hagane (J. Iron and Steel Inst. Jpn.), 1990, vol. 76, pp. 568–75.

  14. 14.

    T.H. Okabe: Ph.D. Thesis, Kyoto University, (23-Mar-1993), https://doi.org/10.11501/3066235, URL: http://hdl.handle.net/2433/74621, 1993, pp. 1–209.

  15. 15.

    T. H. Okabe, T. Oda, and Y. Mitsuda: J. Alloys Compd., 2004, vol. 364, pp. 156-63.

    Article  Google Scholar 

  16. 16.

    I. Park, T. Abiko, and T.H. Okabe: J. Phys. Chem. Solids, 2005, vol. 66, pp. 410–13.

  17. 17.

    D.J. Fray, T.W. Farthing, and G.Z. Chen: International Patent, WO1999064638A1, 1999.

  18. 18.

    G. Z. Chen, D. J. Fray and T. W. Farthing: Nature, 2000, vol. 407, pp. 361-64.

    Article  Google Scholar 

  19. 19.

    D.J. Fray: J. Met. (JOM), 2001, vol. 53, pp. 26–31.

    Article  Google Scholar 

  20. 20.

    G.Z. Chen, D.J. Fray, and T.W. Farthing: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1041-52.

    Article  Google Scholar 

  21. 21.

    K. Ono and R.O. Suzuki: Materia Japan (Nippon Kinzoku Gakkai Kaiho), 2002, vol. 41, pp. 28–31.

  22. 22.

    K. Ono and R.O. Suzuki: J. Met. (JOM), 2002, vol. 54, pp. 59–61.

    Article  Google Scholar 

  23. 23.

    R.O. Suzuki and K. Ono: Electrochem. Soc. Proc., 2002, vol. 19, pp. 810–21.

  24. 24.

    R. Suzuki and S. Inoue: Metall. Mater. Trans. B, 2003, vol. 34, pp. 277-85.

    Article  Google Scholar 

  25. 25.

    D.W. Rostron: US patent 2,834,667, May 13, 1958.

  26. 26.

    J.M.J. Paixao, F.T.D. Almeida, and M.J.D.F. Mourao: UK patent, GB2158102A, 1985.

  27. 27.

    M. Maeda, T. Yahata, K. Mitugi, and T. Ikeda: Mater. Trans. JIM, 1993, vol. 34, pp. 599–603.

  28. 28.

    H.H. Nersisyan, J.H. Lee, and C.W. Won: Mater. Res. Bull., 2003, vol. 38, pp. 1135-46.

    Article  Google Scholar 

  29. 29.

    Y. Zhang, Z. Z. Fang, Y. Xia, P. Sun, B. V. Devener, M. Free, H. Lefler and S. Zheng: Chem. Eng. J., 2017, vol. 308, pp. 299-310.

    Article  Google Scholar 

  30. 30.

    H. Lefler, Z. Z. Fang, Y. Zhang, P. Sun and Y. Xia: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2998-3006.

    Article  Google Scholar 

  31. 31.

    T. H. Okabe, K. T. Jacob and Y. Waseda: Purification Process and Characterization of Ultra High Purity Metals, Springer, Berlin, Heidelberg, 2002, pp. 3-37.

    Google Scholar 

  32. 32.

    W. Muthmann and L. Weiss: Justus Liebigs Ann. Chem., 1904, vol. 331, pp. 1-46.

    Article  Google Scholar 

  33. 33.

    W. Muthmann and L. Weiss: Justus Liebigs Ann. Chem., 1907, vol. 351, pp. 59-99.

    Google Scholar 

  34. 34.

    R. Vogel: Ferrum, 1917, vol. 14, pp. 177-97.

    Google Scholar 

  35. 35.

    J. Lucas, P. Lucas, T. L. Mercier, A. Rollat, and W. Davenport: Rare Earth Science, Technology, Production and Use, Elsevier B. V., 2015.

    Google Scholar 

  36. 36.

    T.H. Okabe, Y. Taninouchi, and C. Zheng: Metall. Mater. Trans. B, 2018, vol. 49B, pp.3107-17.

    Article  Google Scholar 

  37. 37.

    C. Zheng, T. Ouchi, A. Iizuka, Y. Taninouchi and T. H. Okabe: Metall. Mater. Trans. B, 2019, vol. 50, pp. 622-31.

    Article  Google Scholar 

  38. 38.

    C. Zheng, T. Ouchi, L. Kong, Y. Taninouchi and T. H. Okabe: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1652-61.

    Article  Google Scholar 

  39. 39.

    L. Kong, T. Ouchi, and T.H. Okabe: Mater. Trans., JIM, 2019, vol. 60, pp. 2059–68.

  40. 40.

    L. Kong, T. Ouchi, C. Zheng and T. H. Okabe: J. Electrochem. Soc., 2019, vol. 166, pp. E429-37.

    Article  Google Scholar 

  41. 41.

    The rare metal news, arum-shuppan, 2019, pp. 3–9.

  42. 42.

    The rare metal news, arum-shuppan, 2019, no. 2838, p. 5.

  43. 43.

    I. Barin: Thermochemical Data of Pure Substance, 3rd ed., Wiley-VCH, Weinheim, Germany, 1995.

    Google Scholar 

  44. 44.

    O. Knacke, O. Kubaschewski and K. Hesselmann: Thermochemical Properties of Inorganic Substances, 2nd ed., Springer-Verlag, Berlin, Germany, 1991.

    Google Scholar 

  45. 45.

    Y. B. Patrikeev, G. I. Novikov and V. V. Badovskii: Russ. J. Phys. Chem., 1973, vol. 47, p. 284.

    Google Scholar 

  46. 46.

    T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono: Mater. Trans. JIM, 1991, vol. 32, pp. 485–88.

  47. 47.

    C. K. Gupta and N. Krishnamurthy: Miner. Metall. Process., 2013, vol. 30, pp. 38-44.

    Google Scholar 

  48. 48.

    A. H. Daane, D. H. Dennison and F. H. Spedding: J. Am. Chem. Soc., 1953, vol. 75, pp. 2272-73.

    Article  Google Scholar 

  49. 49.

    F. H. Spedding, J. J. Hanak and A. H. Daane: Trans. Metall. Soc. AIME, 1958, vol. 212, pp. 379-83.

    Google Scholar 

  50. 50.

    J. L. Moriarty Jr.: J. Met., 1968, vol. 20, pp.41-45.

    Google Scholar 

  51. 51.

    A. Iizuka, T. Ouchi, and T.H. Okabe: Metall. Mater. Trans. B, 2020, vol. 51, pp. 433-42.

    Article  Google Scholar 

  52. 52.

    A. K. Baev and G. I. Novikov: Russ. J. Inorg. Chem., 1965, vol. 10, pp. 1337-41.

    Google Scholar 

  53. 53.

    J. P. Gaviría, L. G. Navarro, and A. E. Bohé: J. Phys. Chem. A, 2012, vol. 116, pp. 2062-70.

    Article  Google Scholar 

  54. 54.

    W. Gong and R. Zhang: Thermochimica Acta, 2012, vol. 534, pp. 28-32.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Akihiro Iizuka and Dr. Lingxin Kong at The University of Tokyo for their effective recommendations. This work was financially supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research (S) (KAKENHI Grant Nos. 26220910 and 19H05623).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takanari Ouchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 20, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanaka, T., Ouchi, T. & Okabe, T.H. Lanthanothermic Reduction of TiO2. Metall and Materi Trans B (2020). https://doi.org/10.1007/s11663-020-01860-6

Download citation