Effects of Ilmenite Ore on Phase Development of Hematite Ore Sinter

Abstract

The effects of adding 5 to 25 wt pct of ilmenite ore to hematite ore sinter were investigated employing a horizontal tube furnace to clarify the phase development. The temperature was raised nonisothermally at 10 °C/min to 1150 °C in an Ar atmosphere. When the target temperature was reached, 1 L/min of air was injected to allow combustion of the carbon in the pellets. The development of the phases in the sinters was studied using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and electron probe microanalysis (EPMA). The tumbler index (TI) decreased with the increase in ilmenite addition up to 20 wt pct, which increases TiO2 (s) and Fe3O4 (s) content in the sinter blends. Addition of more than 2 wt pct TiO2 (s) to the sinter blends resulted in the formation of perovskite (CaO·TiO2), which affected the development of bonding phases. These changes deteriorated the reduction degradation index (RDI). The estimated melt formation temperature of the sinter blends increased with ilmenite addition up to 15 wt pct and decreased thereafter. An attempt was made to predict the development of phases in the ternary phase diagram of CaO-Fe2O3-TiO2. The reduction behavior of the sinter blends was affected by the type of the bonding phase.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. 1.

    JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. 1.

    N.J. Bristow and C.E. Loo: ISIJ Int., 1992, vol. 32 (7), pp. 819–28.

    CAS  Article  Google Scholar 

  2. 2.

    Y.Q. Bai, S.S. Cheng, and Y.M. Bai: J. Iron Steel Res. Int., 2011, vol. 18, pp. 8–15.

    CAS  Article  Google Scholar 

  3. 3.

    Z. Wang: “Utilization of Unconventional Ferrous Materials by Sintering,” University of Wollongong, Wollongong, 2015, pp. 1–135.

    Google Scholar 

  4. 4.

    A.D. Manshadi, J. Manuel, S. Hapugoda, and N. Ware: ISIJ Int., 2014, vol. 54 (10), pp. 2189–95.

    Article  Google Scholar 

  5. 5.

    M. Zhou, T. Jiang, S. Yang, and X. Xue: Int. J. Miner. Process., 2015, vol. 22 (9), pp. 917–25.

    CAS  Google Scholar 

  6. 6.

    T. Paananen: “The Effects of Minor Oxide Components on Reduction of Iron Ore Agglomerates,” University of Oulu, Oulu, Finland, 2013, pp. 1–79.

    Google Scholar 

  7. 7.

    T. Paananen and K. Kinnunen: Steel Res. Int., 2009, vol. 80 (6), pp. 408–14.

    CAS  Google Scholar 

  8. 8.

    W. Tang, S. Yang, G. Cheng, Z. Gao, H. Tang, and X. Xue: Minerals, 2018, vol. 8, pp. 263–77.

    Article  Google Scholar 

  9. 9.

    N.A.S. Webster, J.G. Churchill, F. Tufaile, M.I. Pownceby, J.R. Manuel, and J.A. Kimpton: ISIJ Int., 2016, vol. 56 (10), pp. 1715–22.

    CAS  Article  Google Scholar 

  10. 10.

    N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1344–57.

    Article  Google Scholar 

  11. 11.

    L.-H. Hsieh and J.A. Whiteman: ISIJ Int., 1989, vol. 29, pp. 24–32

    CAS  Article  Google Scholar 

  12. 12.

    S. Nicol, J. Chen, M.I. Powncerby, and N.A.S. Webster: ISIJ Int., 2018, vol. 58 (12), pp. 2157–72.

    CAS  Article  Google Scholar 

  13. 13.

    A.K. Biswas: Principles of Blast Furnace Ironmaking. Cootha Publishing House, Brisbane, 1981, pp. 107–10

    Google Scholar 

  14. 14.

    S. Jursova, P. Pustejovska, and S. Brozova: Alex. Eng. J., 2018, vol. 57, pp. 1657–64.

    Article  Google Scholar 

  15. 15.

    J.-W. Jeon: “Effects of Magnetite Concentrate on the Assimilation Behavior of Quasi-Particle,” Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang, South Korea, 2015, pp. 10–98.

    Google Scholar 

  16. 16.

    S. Dwarapudi, T.K. Ghosh, V. Tathavadkar, M.B. Denys, D. Bhattacharjee, and R. Venugopal: Int. J. Miner. Process., 2012, vols. 112–113, pp. 55–62.

    Article  Google Scholar 

  17. 17.

    D.F. Gonzalez, I.R. Bustinza, J. Mochon, C.G. Gasca, and L.F. Verdeja: Miner. Process. Extr. Metall. Rev., 2017, vol. 38 (4), pp. 254–64.

    Article  Google Scholar 

  18. 18.

    J. Zhang, X. Guo, and X. Huang: J. Iron Steel Res. Int., 2012, vol. 19, pp. 1–6.

    Google Scholar 

  19. 19.

    Q.-J. Gao, G. Wei, Y.-S. Shen, X. Jiang, H.-Y. Zhen, F.-M. Shen, and C.-S. Liu: J. Cent. South Univ., 2017, vol. 24, pp. 2805–12.

    CAS  Article  Google Scholar 

  20. 20.

    R. Budzik: Metalurgija, 2005, vol. 44, pp. 179–82.

    CAS  Google Scholar 

  21. 21.

    G. Zhang and O. Ostrovski: Int. J. Miner. Process., 2002, vol. 64, pp. 201–18.

    CAS  Article  Google Scholar 

  22. 22.

    S.K Gupta, V. Rajakumar, and P. Grieveson: Metall. Trans. B, 1991, vol. 22B, pp. 711–16.

    CAS  Article  Google Scholar 

  23. 23.

    S. Yang, M. Zhou, X. Xue, T. Jiang, and C. Sun: JOM, 2019, vol. 71, pp. 2812–20.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Wan Ju Kim for help with XRD analysis, Mr. Keun Chang Park for assistance with EPMA operation, and Mr. Lee Sang Ryul for help with gas calibration and preparation of the experimental samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sung-Mo Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 24, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chiwandika, E.K., Jung, S. Effects of Ilmenite Ore on Phase Development of Hematite Ore Sinter. Metall and Materi Trans B (2020). https://doi.org/10.1007/s11663-020-01856-2

Download citation