Computational Efficient Modeling of Sintering in Multi-component Alloys for ICME Applications


The major challenge while using sintering models for simulation of densification in multi-component alloys is finding the correct transport parameters, which are affected by not only temperature but also chemical composition and phase dispersion. A novel approach for determining the effective self-diffusivity and hence modeling the densification of engineering alloys during sintering is proposed. The approach integrates computational thermodynamics and simulation of diffusion-controlled transformations in multi-component alloys together with a low-order model for solid-state sintering. Computational thermodynamics, using the CALPHAD method, is used to predict microstructural phase stability, which is then used by diffusion simulation models to evaluate the effective transport properties for the sintering model. The modeling approach is validated by comparing results for densification of precipitation-hardened and austenitic stainless-steel alloys during an iso-rate sintering schedule with data from the literature. It is shown that the model can capture experimental observations very well. The modeling approach can thus be used in the development of an efficient search methodology for particulate materials within the context of an integrated computational materials engineering (ICME) frameworks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Reprinted from Ref. [19]

Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    G.B. Olson: Science, 1997, vol. 277, pp. 1237–42.

    CAS  Article  Google Scholar 

  2. 2.

    G.B. Olson: Acta Mater., 2013, vol. 61, pp. 771–81.

    CAS  Article  Google Scholar 

  3. 3.

    F. Wakai and K. Brakke: Acta Mater., 2011, vol. 59, pp. 5379–87.

    CAS  Article  Google Scholar 

  4. 4.

    G. Brown, R. Levine, V. Tikare, and E. Olevsky: Adv. Sinter. Sci. Technol., 2010, vol. 209, pp. 103–11.

    CAS  Google Scholar 

  5. 5.

    S. Nosewicz, J. Rojek, K. Wawrzyk, P. Kowalczyk, G. Maciejewski, and M. Maździarz: Comput. Mater. Sci., 2019, vol. 156, pp. 385–95.

    Article  Google Scholar 

  6. 6.

    T.T. Molla, R. Bjørk, E. Olevsky, N. Pryds, and H.L. Frandsen: Comput. Mater. Sci., 2014, vol. 88, pp. 28–36.

    Article  Google Scholar 

  7. 7.

    A. Deschamps, F. Tancret, I.E. Benrabah, F. De Geuser, and H.P. Van Landeghem: Comptes Rendus Phys., 2018, vol. 19, pp. 737-54.

    CAS  Article  Google Scholar 

  8. 8.

    T.T. Molla, J.Z. Liu, and G.B. Schaffer: Integr. Mater. Manuf. Innov., 2018, vol. 7, pp. 136–47.

    Article  Google Scholar 

  9. 9.

    T.T. Molla, J.Z. Liu, and G.B. Schaffer: J. Integr. Mater. Manuf. Innov., 2019, vol. 8, pp. 82–94.

    Article  Google Scholar 

  10. 10.

    M.N. Rahaman: Sintering of Ceramics. Taylor and Francis Group, Boca Raton, FL, 2008.

    Google Scholar 

  11. 11.

    E.A. Olevsky: Mater. Sci. Eng. R-Reports, 1998, vol. 23, pp. 41–100.

    Article  Google Scholar 

  12. 12.

    R.M. German: Crit. Rev. Solid State Mater. Sci., 2010, vol. 35, pp. 263–305.

    CAS  Article  Google Scholar 

  13. 13.

    L. Onsager: Ann. N. Y. Acad. Sci., 1945, vol. 46, pp. 241–65.

    CAS  Article  Google Scholar 

  14. 14.

    M.A. Dayananda: Defect Diffus. forum, 1993, vol. 95–98, pp. 521–36.

    Article  Google Scholar 

  15. 15.

    M. Perrut: J. AerospaceLab, 2015, 9, 1–11.

    Google Scholar 

  16. 16.

    A. Borgenstam, A. Engstro, L. Ho Lund, and J.A. Ren: 2000, vol. 21, pp. 269–80.

  17. 17.

    H. Larsson and A. Engström: Acta Mater., 2006, vol. 54, pp. 2431–9.

    CAS  Article  Google Scholar 

  18. 18.

    P. Imgrund, A. Rota, F. Petzoldt, and A. Simchi: Int. J. Adv. Manuf. Technol., 2007, vol. 33, pp. 176–86.

    Article  Google Scholar 

  19. 19.

    I.D. Jung, S. Ha, S.J. Park, D.C. Blaine, R. Bollina, and R.M. German: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5548–56.

    Article  Google Scholar 

Download references


This work was funded by The University of Melbourne.

Competing interests

The authors declare no competing interests.

Author information



Corresponding author

Correspondence to Tesfaye T. Molla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 12, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molla, T.T., Liu, J.Z. & Schaffer, G.B. Computational Efficient Modeling of Sintering in Multi-component Alloys for ICME Applications. Metall Mater Trans B 51, 54–60 (2020).

Download citation