Element Transfer Behaviors of Fused CaF2-SiO2 Fluxes Subject to High Heat Input Submerged Arc Welding

Abstract

A series of fused CaF2-SiO2 binary fluxes have been developed to investigate element transfer behaviors under high heat input submerged arc welding. Transfer of elements is quantified by Δ quantities, which demonstrate respective contributions from the flux to the weld metal. Effects of SiO2 contents on the transfer of Si, Mn, and O have been thoroughly evaluated. Thermodynamic considerations have been attempted for constraining chemical reactions and mechanisms involved in welding.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    1. B. Kim, S. Uhm, C. Lee, J. Lee and Y. An: J. Eng. Mater. Technol., 2005, vol. 127, pp. 204–213.

    CAS  Article  Google Scholar 

  2. 2.

    2. D. Viano, N. Ahmed and G. Schumann: Sci. Technol. Weld. Joining, 2000, vol. 5, pp. 26–34.

    CAS  Article  Google Scholar 

  3. 3.

    J. Jorge, L. deSouza, E. Marouco, O. dosSantosFilho, J. Diniz (2017) Weld. Int. 31:499–508.

    Article  Google Scholar 

  4. 4.

    4. D. Olson, S. Liu, R. Frost, G. Edwards, and D. Fleming: Nature and Behavior of Fluxes Used for Welding, ASM Handbook, Materials Park, OH, 1993, vol. 6, pp. 43–54.

    Google Scholar 

  5. 5.

    5. S. Kou: Welding Metallurgy, 2nd ed.,Wiley & Sons, New York, NY, 2003, pp. 22–95.

    Google Scholar 

  6. 6.

    6. A. Liby, R. Dixon and D. Olson: Welding: Theory and Practice, 1st ed., Elsevier Science Publishers B, Amsterdam, Netherlands, 1990, pp. 117–168.

    Google Scholar 

  7. 7.

    7. C. Dallam, S. Liu and D. Olson: Weld. J., 1985, vol. 64, pp. 140–151.

    Google Scholar 

  8. 8.

    8. C. Chai and T. Eagar: Weld. J., 1982, vol. 61, pp. 229–232.

    Google Scholar 

  9. 9.

    9. P. Burck, J. Indacochea and D. Olson: Weld. J, 1990, vol. 3, pp. 115–122.

    Google Scholar 

  10. 10.

    10. C. Chai: Slag-Metal Reactions During Flux Shielded Arc Welding, Massachusetts Institute of Technology, Cambridge, MA, 1980.

    Google Scholar 

  11. 11.

    11. N. Pandey, A. Bharti and S. Gupta: J. Mater. Process. Technol., 1994, vol. 40, pp. 195–211.

    Article  Google Scholar 

  12. 12.

    12. C. Chai and T. Eagar: Metall. Trans. B, 1981, vol. 12, pp. 539–547.

    Article  Google Scholar 

  13. 13.

    13. U. Mitra and T. Eagar: Metall. Trans. B, 1991, vol. 22, pp. 65–71.

    Article  Google Scholar 

  14. 14.

    14. U. Mitra and T. Eagar: Metall. Trans. B, 1991, vol. 22, pp. 73–81.

    Article  Google Scholar 

  15. 15.

    15. U. Mitra and T. Eagar: Metall. Trans. B, 1991, vol. 22, pp. 83–100.

    Article  Google Scholar 

  16. 16.

    16. G. Belton, T. Moore and E. Tankins: Weld. J, 1963, vol. 42, pp. 289s–297s.

    Google Scholar 

  17. 17.

    17. L. Sharma and R. Chhibber: J. Pressure Vessel Technol., 2019, https://doi.org/10.1177/0954408918794036

    Article  Google Scholar 

  18. 18.

    18. X. Zou, J. Sun, H. Matsuura and C. Wang: Metall. Mater. Trans. A, 2019, https://doi.org/10.1007/s11661-019-05387-7.

    Article  Google Scholar 

  19. 19.

    19. Y. Putilin, A. Romanova, A. Milov: Ionnye Rasplavy, 1976, vol. 4, pp. 79–83.

    CAS  Google Scholar 

  20. 20.

    20. C. Natalie, D. Olson, and M. Blander: Ann. Rev. Mater. Sci., 1986, vol. 16, pp. 389–413.

    CAS  Article  Google Scholar 

  21. 21.

    21. J. Indacochea, M. Blander, N. Christensen and D. Olson: Metall. Trans. B, 1985, vol. 16, pp. 237–245.

    Article  Google Scholar 

  22. 22.

    22. J. Jang and J. Indacochea: J. Mater. Sci., 1987, vol. 22, pp. 689–700.

    CAS  Article  Google Scholar 

  23. 23.

    23. J. Dowling, J. Corbett and H. Kerr: Metall. Trans. A, 1986, vol. 17, pp. 1611–1623.

    Article  Google Scholar 

  24. 24.

    24. X. Zou, D. Zhao, J. Sun, C. Wang and H. Matsuura: Metall. Mater. Trans. B, 2018, vol. 49, pp. 481–489

    Article  Google Scholar 

  25. 25.

    25. S. Terashima and H. Bhadeshia: Sci. Technol. Weld. Joining, 2006, vol. 11, pp. 509–516.

    CAS  Article  Google Scholar 

  26. 26.

    26. J. Zhang, J. Leng and C. Wang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2083–2087.

    Article  Google Scholar 

  27. 27.

    27. A. Polar, J. Indacochea and M. Blander: Weld. J., 1990, vol. 69, pp. 69–74.

    Google Scholar 

  28. 28.

    28. D. Gery, H. Long and P. Maropoulos: J. Mater. Process. Technol., 2005, vol. 167, pp. 393–401.

    CAS  Article  Google Scholar 

  29. 29.

    29. G. Evans: Weld. J., 1980, vol. 59, pp. 67–75.

    Google Scholar 

  30. 30.

    30. C. Chai and T. Eagar: J. Mater. Energy Syst., 1983, vol. 5, pp. 160–164.

    CAS  Article  Google Scholar 

Download references

We thank the National Natural Science Foundation of China (Grant Nos. 51622401, 51861130361, 51861145312, and 51850410522), Newton Advanced Fellowship by the Royal Society (Grant No. RP12G0414), Research Fund for Central Universities (Grant No. N172502004), Xingliao Talents Program (XLYC1807024 and XLYC1802024), and Global Talents Recruitment Program endowed by the Chinese government for their financial support. We also thank the State Key Laboratory of Solidification Processing, Northwestern Polytechnical University (Grant No. SKLSP201805), Shagang Steel, and Lincoln Electric China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 19, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Coetsee, T. & Wang, C. Element Transfer Behaviors of Fused CaF2-SiO2 Fluxes Subject to High Heat Input Submerged Arc Welding. Metall Mater Trans B 51, 16–21 (2020). https://doi.org/10.1007/s11663-019-01753-3

Download citation