Effect of Oxygen Partial Pressure and Temperature on the Oxidation Behavior of SiB6


The oxidation kinetics of silicon hexaboride (SiB6) was studied at different partial pressures of oxygen. The specific weight gain was measured at 1173 K, 1223 K, and 1273 K for \( P_{{{\text{O}}_{2} }} \) = 0.1, 0.23, and 0.33 atm using thermogravimetric analysis. The conventional empirical expressions for oxidation were observed at all selected oxygen partial pressures and temperatures. The structural characterization of the oxidation product was characterized using XRD and FT-IR, with SiB6, SiO2, B, and amorphous B2O3 observed after oxidation for 25 hours. The oxidation surface morphology was also characterized to obtain the oxidation product size, ranging from 4.54 to 24.69 µm with increasing \( P_{{{\text{O}}_{2} }} \) and temperature. The diffusional activation energy for the oxidation process was also calculated from the empirical constant, obtained from the mathematical fitting of the specific weight gain with time. The oxidation activation energies for SiB6 are 250.72, 235.64, and 232.65 kJ/mol at \( P_{{{\text{O}}_{2} }} \) = 0.1, 0.23, and 0.33 atm, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    B. Armas, C. Combescure, J. M. Dusseau, T. P. Lepetre, J. L. Robert and B. Pistoulet, Journal of the Less Common Metals 1976, vol. 47, pp. 135-140.

    CAS  Article  Google Scholar 

  2. 2.

    Y.O. Esin, S.P. Kolesnikov, B.M. Baev and A.F. Ermakov, Journal of Structure Properties of Metallurgical Slag and Melts 1978, vol. 3, pp. 182-83.

    Google Scholar 

  3. 3.

    A. I. Zaitsev and A. A. Kodentsov, Journal of Phase Equilibria 2001, vol. 22, pp. 126-135.

    CAS  Article  Google Scholar 

  4. 4.

    A.K. Biletskii, A.A. Scheretskii, V.T. Vitusevich and V.T. Shumihin, Metals 1988, vol. 3, pp. 66-68

    Google Scholar 

  5. 5.

    R. Noguchi, K. Suzuki, F. Tsukihashi and N. Sano, Metallurgical and Materials Transactions B 1994, vol. 25, pp. 903-907.

    CAS  Article  Google Scholar 

  6. 6.

    J. Wu, W.Ma, D. Tang, B. Jia, B. Yang, D. Liu and Y. Dai, Procedia Engineering 2012, vol. 31, pp. 297-301.

    CAS  Article  Google Scholar 

  7. 7.

    B. Armas, C. Combescure, G. Male and M. Morales, Journal of the Less Common Metals, 1979, vol. 67, pp. 449-453.

    CAS  Article  Google Scholar 

  8. 8.

    M. A. Imam and R. G. Reddy, Metallurgical and Materials Transactions B 2018, Vol.49 (6),pp 3504–3512.

    Article  Google Scholar 

  9. 9.

    M. A. Imam and R. G. Reddy, Metallurgical and Materials Transactions B 2018, Vol.50 (1),pp 981–990.

    Google Scholar 

  10. 10.

    M.A. Imam and R.G. Reddy, Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies, Springer, 2017, pp. 457–64.

  11. 11.

    M.A. Imam and R.G. Reddy, Mg Technology, Springer, 2018, pp. 173–79

  12. 12.

    M. A Imam and R.G. Reddy, High-Temperature Materials and Processes 2019, vol. 38, pp. pp.411-424.

    CAS  Article  Google Scholar 

  13. 13.

    G.N. Makarenko, In Boron and Refractory Borides, ed. Vlado I. Matkovich, Springer, Berlin, 1977, pp. 310–30.

  14. 14.

    A. Mostafa and M. Medraj, Materials 2017, vol. 10, p. 676.

    Article  Google Scholar 

  15. 15.

    R. W. Cahn, Advanced Materials 1991, vol. 3, pp. 628-629.

    Google Scholar 

  16. 16.

    R. K.Bird, T.A. Wallace and S.N. Sankaran, Journal of spacecraft and rockets 2004, vol. 41, pp. 213-220.

    CAS  Article  Google Scholar 

  17. 17.

    X. He, Y. Li, L. Wang, Y.Sun and S. Zhang, Thin Solid Films 2009, vol. 517, pp. 5120-5129.

    CAS  Article  Google Scholar 

  18. 18.

    J. Matsushita and S. Komarneni, Materials Research Bulletin 2001, vol. 36, pp. 1083-1089.

    CAS  Article  Google Scholar 

  19. 19.

    W. A. Tiller, Journal of The Electrochemical Society 1980, vol. 127, pp. 619-624.

    CAS  Article  Google Scholar 

  20. 20.

    W. A. Tiller, Journal of The Electrochemical Society 1980, vol. 127, pp. 625-632.

    CAS  Article  Google Scholar 

  21. 21.

    W. A. Tiller, Journal of the Electrochemical Society 1981, vol. 128, pp. 689-697.

    CAS  Article  Google Scholar 

  22. 22.

    Y. Wang and M. Trenary, Chemistry of materials 1993, vol. 5, pp. 199-205.

    CAS  Article  Google Scholar 

  23. 23.

    Y. Wang, J. Fan, and M. Trenary, Chem. Mater., 1993, vol. 5, pp. 192-198.

    CAS  Article  Google Scholar 

  24. 24.

    E. A. Irene and R. Ghez, Applied Surface Science 1987, vol. 30, pp. 1-16.

    CAS  Article  Google Scholar 

  25. 25.

    I. Barin, Thermochemical Data of Pure Substances. VCH, Weinheim, 1989.

    Google Scholar 

  26. 26.

    M.L. Whittaker, H.Y. Sohn, and R.A. Cutler, J. Solid State Chem., 2013, vol. 207, pp. 163-169.

    CAS  Article  Google Scholar 

  27. 27.

    T. W. Jason, J. C. Daniel, E. H. Morgan, L. R.Andrea, C. I. David, K. Savas, M. J. Wojciech and R. Faiz, Semiconductor Science and Technology 2016, vol. 31, p. 105007.

    Article  Google Scholar 

  28. 28.

    A. Bongiorno and A. Pasquarello, Physical review letters 2002, vol. 88, p. 125901.

    Article  Google Scholar 

  29. 29.

    F. J. Norton, Nature 1961, vol. 191, p. 701.

    CAS  Article  Google Scholar 

  30. 30.

    D. L. Poerschke, M. D. Novak, N. A. Jabbar, S. Krämer and C. G. Levi, Journal of the European Ceramic Society 2016, vol. 36, pp. 3697-3707.

    CAS  Article  Google Scholar 

  31. 31.

    D. V. Kolovertnov and I. B. Bankovskaya, Glass Phys. Chem., 2015, vol. 41, pp. 324-328.

    CAS  Article  Google Scholar 

  32. 32.

    Y.L. Zhang, J.F. Huang, K.J. Zhu, L.Y. Cao, C.Y. Li, L. Zhou, B. Y. Zhang, W. H. Kong and B. Zhang, Appl. Surf. Sci., 2015, vol. 340, pp. 43-48.

    CAS  Article  Google Scholar 

  33. 33.

    G. Shao, X. Wu, Y. Kong, S. Cui, X. Shen, C. Jiao and J. Jiao, Surface and Coatings Technology 2015, vol. 270, pp. 154-163.

    CAS  Article  Google Scholar 

  34. 34.

    A. Roine, HSC Chemistry, 2013, vol. 7.

  35. 35.

    M. Ramachandran, D. Mantha, C. Williams and R. G. Reddy, Metallurgical and Materials Transactions A, 2011. Vol. 42, pp. 202-210.

    Article  Google Scholar 

  36. 36.

    C. M. Carney, T. A. Parthasarathy and M. K. Cinibulk, Journal of the American Ceramic Society 2011, vol. 94, pp. 2600-2607.

    CAS  Article  Google Scholar 

  37. 37.

    Murch, G.E., Diffusion in crystalline solids. 2012: Academic Press, New York.

    Google Scholar 

  38. 38.

    W. Yang, W.Ao, J. Zhou, J. Liu, K. Cen and Y.Wang, Journal of Propulsion and Power 2013, vol. 29, pp. 1207-1213.

    CAS  Article  Google Scholar 

  39. 39.

    C.H. Wen, T.M. Wu and W. J. Wei, Journal of the European Ceramic Society 2004, vol. 24, pp. 3235-3243.

    CAS  Article  Google Scholar 

  40. 40.

    W. Kingery, Introduction to Ceramics, 2nd ed., Wiley, New York, 1976.

    Google Scholar 

  41. 41.

    R.C. Jaeger (2001) Introduction to Microelectronic Fabrication: Modular Series on Solid State Devices. Prentice Hall, Upper Saddle River.

    Google Scholar 

  42. 42.

    D. Yu, C.D. Kong, J.K. Zhuo, S.Q. Li and Q. Yao, Science China Technological Sciences 2015, vol. 58, pp. 2016-2024.

    CAS  Article  Google Scholar 

  43. 43.

    J.W. Hinze, W.C. Tripp, and H.C. Graham, Systems Research Labs, Inc., Dayton, OH 1975.

  44. 44.

    W.C. Tripp and H.C. Graham, Journal of the Electrochemical Society 1971, vol. 118, pp. 1195-1199.

    CAS  Article  Google Scholar 

  45. 45.

    J. B. Berkowitz‐Mattuck, Journal of the Electrochemical Society 1966, vol. 113, pp. 908-14.

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the financial support, Grant No. DMR-1310072, of the National Science Foundation (NSF). The authors would also like to acknowledge the financial support from American Cast Iron Pipe Company (ACIPCO) and Department of Metallurgical and Materials Engineering at the University of Alabama.

Author information



Corresponding author

Correspondence to Ramana G. Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Imam, M.A., Young, J.S. & Reddy, R.G. Effect of Oxygen Partial Pressure and Temperature on the Oxidation Behavior of SiB6. Metall Mater Trans B 51, 386–394 (2020). https://doi.org/10.1007/s11663-019-01749-z

Download citation