Transition from Crystal to Metallic Glass and Micromechanical Property Change of Fe-B-Si Alloy During Rapid Solidification

Abstract

The effects of high undercooling and a large cooling rate can be achieved by the use of a containerless drop tube technique, which is conducive to rapid solidification and formation of a metastable phase. Here, the rapid solidification of Fe78Si13B9 (S1) and Fe78Si9B13 (S2) alloys was completed under microgravity condition. Based on theoretical calculations, a maximum undercooling of 433 K (0.29 TL) and 412 K (0.28 TL) was obtained, respectively. The microstructure evolution and the formation of an amorphous-nanocrystalline structure for the two alloys were compared and analyzed. The results show that S2 alloy has better amorphous forming ability and higher hardness. During the solidification of S1 alloy, the primary phase α-Fe grows by the manner of dendrites, and the secondary dendrite arm spacing decreases exponentially with increased undercooling. An amorphous-nanocrystalline structure is developed when the undercooling is increased up to 388 K; S2 alloy forms an amorphous-nanocrystalline structure at an undercooling of 275 K and is completely amorphized after exceeding an undercooling of 402 K. In addition, the hardness and elastic modulus are acquired by nanoindentation technology under different degrees of undercooling. The phase constitution, morphology, distribution, and grain refinement of the alloys have important effects on the micromechanical properties of these alloys.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    O. Oloyede, T.D. Bigg, R.F. Cochrane, and A.M. Mullis: Mater. Sci. Eng. A, 2016,vol. 654, pp. 143-50.

    CAS  Article  Google Scholar 

  2. 2.

    P. Lü and H. P. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 499-508.

    Article  Google Scholar 

  3. 3.

    W.J. Xie and B. Wei: Mater. China, 2017, vol. 36, pp. 001-5.

    Google Scholar 

  4. 4.

    Y. Ruan, Q.Q. Wang, S.Y. Chang, and B. Wei: Acta Mater., 2017, vol. 141, pp. 456-65.

    CAS  Article  Google Scholar 

  5. 5.

    N. Haque, R.F. Cochrane, and A.M. Mullis: Intermetallics, 2016, vol. 76, pp. 70-77.

    CAS  Article  Google Scholar 

  6. 6.

    E. Liu, J. Swerts, S. Couet, S. Mertens, Y. Tomczak, and T. Lin: Appl. Phys. Lett., 2016, vol. 108, p. 132405.

    Article  Google Scholar 

  7. 7.

    J. Petzold: Scr. Mater., 2003, vol. 48, pp. 895-901.

    CAS  Article  Google Scholar 

  8. 8.

    A.H. Taghvaei and A.M. Khoshrodi: J. Alloy Compd., 2018, vol. 742, pp. 887-96.

    CAS  Article  Google Scholar 

  9. 9.

    M. Srinivas, B. Majumdar, G. Phanikumar, and D. Akhtar: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 370-79.

    Article  Google Scholar 

  10. 10.

    D.A. Babu, A.P. Srivastava, B. Majumdar, D. Srivastava, and D. Akhtar: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1313-20.

    Article  Google Scholar 

  11. 11.

    Y.M. Chen, T. Ohkubo, M. Ohta, Y. Yoshizawa, and K. Hono: Acta Mater., 2009, vol. 57, pp. 4463-72.

    CAS  Article  Google Scholar 

  12. 12.

    H.L. Huang, C.L. Yang, Q.J. Song, K. Ye, and F. Liu: J. Appl. Phys., 2016, vol. 120, p. 043905.

    Article  Google Scholar 

  13. 13.

    Y. Yoshizawa, S. Oguma, and K. Yamauchi: J. Appl. Phys., 1988, vol. 64, pp. 6044 – 46.

    CAS  Article  Google Scholar 

  14. 14.

    W. Lv and G.J. Chen: J. Magn. Mater. Devices, 2015, vol. 46, pp. 72-76.

    Google Scholar 

  15. 15.

    C.L Yang, G.C. Yang, F. Liu, Y.Z. Chen, N. Liu, D. Chen, and Y.H. Zhou: Physica B, 2006, vol. 373, pp. 136-141.

    CAS  Article  Google Scholar 

  16. 16.

    Z.Z. Zhang, G. Chen, and G.C. Yang: Mater. Sci. Technol., 2001, vol. 9, pp. 342-46.

    CAS  Google Scholar 

  17. 17.

    S.L. Ye, X.Y. Li, X.F. Bian, W.M. Wang, L.J. Yin, and B. An: J. Alloy Compd., 2013, vol. 562, pp. 143-149.

    CAS  Article  Google Scholar 

  18. 18.

    G. Abrosimova, A. Aronin, D. Matveev, and E. Pershina: Mater. Lett., 2013, vol. 97, pp. 15-17.

    CAS  Article  Google Scholar 

  19. 19.

    Y.C. Niu, X.F. Bian, W.M. Wang, X.B. Qing, and G.F. Wang: Mater. Lett., 2005, vol. 59, pp. 1589-94.

    CAS  Article  Google Scholar 

  20. 20.

    A. Sinha, G.G. Khan, B. Mondal, J.D. Majumdar, and P.P. Chattopadhyay: Metall. Mater. Trans. B, 2015, vol.46B, pp. 1951-58.

    Article  Google Scholar 

  21. 21.

    A.A. Golubenko, Yu.V. Milman, and S.N. Dub: Acta Mater., 2011, vol. 59, pp. 7480–87.

    Article  Google Scholar 

  22. 22.

    D. Qian, A.F. Zhang, J.X. Zhu, Y. Li, W.X. Zhu, B.L. Qi, N. Tamura, D.C. Li, Z.X. Song, and K. Chen: Appl. Phys. Lett., 2016, vol. 109, p. 101907.

    Article  Google Scholar 

  23. 23.

    H.Y. Gou, N. Dubrovinskaia, E. Bykova, A. Tsirlin, D.Kasinathan, W. Schnelle, A. Richter, M. Merlini, M. Hanfland, A. Abakumov, D. Batuk, G.Van Tendeloo, Y. Nakajima, A. Kolmogorov, and L. Dubrovinsky: Phys. Rev. Lett., 2013, vol. 111, p. 157002.

    Article  Google Scholar 

  24. 24.

    W. Liu, N. Yan, and H.P. Wang: Sci. China Tech. Sci., 2019, vol. 61, pp. 1-11.

    Google Scholar 

  25. 25.

    M.X. Li, H.P. Wang, N. Yan, and B. Wei: Sci. China Tech. Sci., 2018, vol. 61, pp. 1021-30.

    CAS  Article  Google Scholar 

  26. 26.

    V.I. Tkatch, S.N. Denisenko, and O.N. Beloshov: Acta Mater., 1997, vol. 45, pp. 2821-26.

    CAS  Article  Google Scholar 

  27. 27.

    Y.H. Wu, J. Chang, W.L. Wang, L. Hu, S.J. Yang, and B. Wei: Acta Mater., 2017, vol. 129, pp. 366-77.

    CAS  Article  Google Scholar 

  28. 28.

    E.S. Lee and S. Ahn: Acta Metall. Mater., 1994, vol. 42, pp. 3231-43.

    CAS  Article  Google Scholar 

  29. 29.

    W.T. Kim, P.W. Jang, S.C. Yu, and B.S. Chun: Mater. Sci. Eng. A, 1994, vol. 179-180, pp. 309-15..

    Google Scholar 

  30. 30.

    M. Colombo, E. Gariboldia, and A. Morri: Mater. Sci. Eng. A, 2018, vol. 713, pp. 151-60.

    CAS  Article  Google Scholar 

  31. 31.

    E. Acer, E. Çadırlı, H. Erol, H. Kaya, and M. Gündüz: Metall. Trans. A, 2017, vol. 48, pp. 1-13.

    Article  Google Scholar 

  32. 32.

    T. Kulik: J. Non-Cryst. Solids, 2001, vol. 287, pp. 145-61.

    CAS  Article  Google Scholar 

  33. 33.

    S. An, Y. Li, J.H. Li, S. Zhao, B.X. Liu, and P.F. Guan: Acta Mater., 2018, vol. 152, pp. 1-6.

    CAS  Article  Google Scholar 

  34. 34.

    P. Desre, I. Ansara, P. Cremer, and J. C. Joud: Calphad, 1989, vol. 13, pp. 89-96.

    CAS  Article  Google Scholar 

  35. 35.

    Y.Y. Sun, M. Song, X.Z. Liao, G. Sha, and Y.H. He: Mater. Sci. Eng. A, 2012, vol. 543, pp. 145-51.

    CAS  Article  Google Scholar 

  36. 36.

    H. Bei, Z.P. Lu, S. Shim, G. Chen, and E.P. Georgea: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1735-42.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51734008, 51522102, and 51771154), the National Key R&D Program of China (Grant No. 2018YFB2001800), and the Fundamental Research Funds for the Central Universities. The authors are grateful to Dr. D.L. Geng and Miss W. Liu for their valuable help with the experiments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. P. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 20, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, P.C., Chang, J. & Wang, H.P. Transition from Crystal to Metallic Glass and Micromechanical Property Change of Fe-B-Si Alloy During Rapid Solidification. Metall Mater Trans B 51, 327–337 (2020). https://doi.org/10.1007/s11663-019-01748-0

Download citation