Kinetic Study on Thermal Decomposition Behavior of Hematite Ore Fines at High Temperature


The ironmaking processes that directly use iron ore fines as raw material are under development and receiving more and more attention. In a flash reduction process, both the thermal decomposition reaction and the reduction reaction of ore fines are extremely fast and cause loss of oxygen from iron oxides. However, it is difficult to distinguish between the thermal decomposition and reduction during the conversion from hematite to magnetite. In this work, the thermal decomposition behavior of hematite ore fines with different particle sizes is investigated by using a thermogravimetric analyzer (TGA). The kinetic parameters are calculated based on the Coats–Redfern method and then verified by the Satava–Sestak method. The F2 model is identified as the most probable mechanism function under the present experimental conditions. The average values of activation energy and the pre-exponential factor are 1256 kJ mol−1 and 1.94 × 1041 s−1, respectively. The internal morphology of the fine hematite particle with partial decomposition is observed to further investigate the reaction mechanism. Moreover, the relative contribution of the two kinds of chemical reactions (thermal decomposition and gaseous reduction) to the overall conversion process from hematite to magnetite is investigated by kinetic calculations based on the obtained reaction rate equations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Y. Nakano, M. Ishida, T. Akehata, and T. Shirai: Metall. Trans. B, 1975, vol. 6B, pp. 429–34.

    CAS  Article  Google Scholar 

  2. 2.

    S. Hayashi and Y. Iguchi: ISIJ Int., 1990, vol. 30, pp. 722–30.

    CAS  Article  Google Scholar 

  3. 3.

    A. Orth, N. Anastasijevic, and H. Eichberger: Miner. Eng., 2007, vol. 20, pp. 854–61.

    CAS  Article  Google Scholar 

  4. 4.

    M.A. Quader, S. Ahmed, S.Z. Dawal, and Y. Nukman: Renew. Sustain. Energy Rev., 2016, vol. 55, pp. 537–49.

    Article  Google Scholar 

  5. 5.

    H.K. Pinegar, M.S. Moats, and H.Y. Sohn: Ironmaking Steelmaking, 2012, vol. 39, pp. 398–06.

    CAS  Article  Google Scholar 

  6. 6.

    H.K. Pinegar, M.S. Moats, and H.Y. Sohn: Ironmaking Steelmaking, 2013, vol. 40, pp. 32–43.

    CAS  Article  Google Scholar 

  7. 7.

    H. Wang and H.Y. Sohn: Steel Res. Int., 2012, vol. 83, pp. 903–09.

    CAS  Article  Google Scholar 

  8. 8.

    H. Wang and H.Y. Sohn: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1133–45.

    Google Scholar 

  9. 9.

    F. Chen, Y. Mohassab, T. Jiang, and H.Y. Sohn: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1133–45.

    Article  Google Scholar 

  10. 10.

    A. Habermann, F. Winter, H. Hofbauer, J. Zirngast, and J. L. Schenk: ISIJ Int., 2000, vol. 40, pp. 935–42.

    CAS  Article  Google Scholar 

  11. 11.

    H. Fan, B. Son, and Q. Li: Mater. Chem. Phys., 2006, vol. 98, pp. 148–53.

    CAS  Article  Google Scholar 

  12. 12.

    O. Ozdemir and D.J. Dunlop: Earth Plan. Sci. Lett., 2000, vol. 177, pp. 59–67.

    CAS  Article  Google Scholar 

  13. 13.

    L.X. Yang and S. Witchard: ISIJ Int., 1998, vol. 38, pp. 1069–76.

    CAS  Article  Google Scholar 

  14. 14.

    E.T. Turkdogan and J.V. Vinters: Metall. Trans., 1971, vol. 2, pp. 3175–88.

    CAS  Article  Google Scholar 

  15. 15.

    E.T. Turkdogan and J.V. Vinters: Metall. Trans., 1971, vol. 2, pp. 3189-96.

    CAS  Article  Google Scholar 

  16. 16.

    Y. X. Qu, Y.X. Yang, Z.S. Zou, C. Zeilstra, K. Meijer, and R. Boom: ISIJ Int., 2015, vol. 55, pp. 952–60.

    CAS  Article  Google Scholar 

  17. 17.

    M. Salmani, E.K. Alamdari, and S. Firoozi: J. Therm. Anal. Calorim., 2017, vol. 128, pp. 1385–90.

    CAS  Article  Google Scholar 

  18. 18.

    H.M. Ahmed, P. Semberg, C. Andersson, and B. Bjorkman: ISIJ Int., 2018, vol. 58, pp. 446–52.

    CAS  Article  Google Scholar 

  19. 19.

    M. Sorescu and T. Xu: J. Therm. Anal. Calorim., 2012, vol. 107, pp. 463–69.

    CAS  Article  Google Scholar 

  20. 20.

    M. Sorescu, T. Xu, and L. Diamandescu: Mater. Charact., 2010, vol. 61, pp. 1103–18.

    CAS  Article  Google Scholar 

  21. 21.

    M. Sorescu and L. Diamandescu: Hyperfine Interact., 2010, vol. 196, pp. 349–58.

    CAS  Article  Google Scholar 

  22. 22.

    Y.X. Qu, Y.X. Yang, Z.S. Zou, C. Zeilstra, K. Meijer, and R. Boom: ISIJ Int., 2014, vol. 54, pp. 2196–05.

    CAS  Article  Google Scholar 

  23. 23.

    X. Zhang, Y. Han, Y. Li, and Y. Sun: Mineral, 2017, vol. 7, pp. 211–24.

    Article  Google Scholar 

  24. 24.

    A.W. Coats and J.P. Redfern: Nature, 1964, vol. 201, pp. 68–69.

    CAS  Article  Google Scholar 

  25. 25.

    V. Satava and J. Sestak: J. Therm. Anal., 1975, vol. 8, pp. 477–89.

    Article  Google Scholar 

  26. 26.

    P.C. Beuria, S.K. Biswal, B.K. Mishra, and G.G. Roy: Int. J. Miner. Metall. Mater. 2017, vol. 24, pp. 229–39.

    CAS  Article  Google Scholar 

  27. 27.

    A.K. Galwey and M.E. Brown: Thermochimica Acta, 1995, vol. 269/270, pp. 1–25.

    Article  Google Scholar 

  28. 28.

    A. Khawam and D.R. Flanagan: J. Pharm. Sci., 2006, vol. 95, pp. 472–98.

    CAS  Article  Google Scholar 

  29. 29.

    J. Sestak: J. Therm. Anal., 2012, vol. 110, pp. 5–16.

    CAS  Article  Google Scholar 

  30. 30.

    M.E. Brown and A.K. Galwey: Anal. Chem., 1989, vol. 61, pp. 1136–39.

    CAS  Article  Google Scholar 

  31. 31.

    A.K. Galwey and M.E. Brown: J. Therm. Anal. Calorim., 2000, vol. 60, pp. 863–77.

    CAS  Article  Google Scholar 

  32. 32.

    P.K. Strangway: Master’s Thesis, Toronto University, Toronto, ON, Canada, 1964.

  33. 33.

    L. Xing, Z. Zou, Y. Qu, L. Shao, and J. Zou: Steel Res. Int., 2019.

    Article  Google Scholar 

  34. 34.

    Y. Qu, Y. Yang, Z. Zou, C. Zeilstra, K. Meijer, and R. Boom: ISIJ Int., 2015, vol. 55, pp. 149–57.

    CAS  Article  Google Scholar 

Download references


The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 51504056, 51604068, and 51574046) and the Fundamental Research Funds for the Central Universities (Grant No. N182504012).

Author information



Corresponding author

Correspondence to Yingxia Qu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 12, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xing, L., Qu, Y., Wang, C. et al. Kinetic Study on Thermal Decomposition Behavior of Hematite Ore Fines at High Temperature. Metall Mater Trans B 51, 395–406 (2020).

Download citation