Three-Dimensional Modeling of an Ironmaking Blast Furnace with a Layered Cohesive Zone

Abstract

A three-dimensional (3D) parallel process model simulating ironmaking blast furnaces (BFs) has been developed using computational fluid dynamics (CFD). It explicitly describes the layered burden and cohesive zone (CZ), gas and liquid re-distribution near raceways, trickling liquid flow in the CZ and dripping zone, and stockline variation. The applicability of the model is confirmed by the reasonable agreement between predicted and measured in-furnace states and global performance under experimental and industrial conditions. Using this model, the 3D characteristics of in-furnace states for a 5000 m3 commercial BF with 40 tuyeres are revealed. Also, it is used to assess the commonly used slot, axisymmetric, sector and full 3D models, which may treat burden distribution as well as gas and liquid flows around raceways differently. The results reveal that the sector and full 3D models are nearly the same; the slot model over-predicts the coke rate up to 13 kg/tHM, and the axisymmetric model gives slightly higher productivity and liquid temperature. These differences are clarified by analyzing model simplifications and their impacts on in-furnace states.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Abbreviations

\( a_{{\text{FeO}}} \) :

Activity of molten wustite

\( A_{\text{c}} \) :

Effective surface area of coke for reaction (m2)

\( A_{\text{throat}} \) :

Cross-sectional area of BF throat (m2)

\( c_{\text{p}} \) :

Specific heat \( \left( {\text{J kg}^{ - 1} \text{ K}^{ - 1} } \right) \)

\( C_{{\text{SiO}_{2} }} \) :

Concentration of \( \text{SiO}_{2} \)\( \left( {\text{mol m}^{ - 3} } \right) \)

\( {\text{CR}} \) :

Coke rate \( \left( {\text{kg tHM}^{ - 1} } \right) \)

\( d \) :

Diameter of solid phase (m)

\( D \) :

Diffusion coefficient \( \left( {\text{m}^{2} \,\text{s}^{ - 1} } \right) \)

\( D_{{\text{s5}}} \) :

Intra-particle diffusion coefficient of \( {\text{H}}_{ 2} \)in reduced iron phase \( \left( {\text{m}^{2} \,\text{s}^{ - 1} } \right) \)

\( E_{\text{f}} \) :

Effectiveness factors of solution loss reaction by \( {\text{CO}} \)

\( E^{\prime}_{f} \) :

Effectiveness factors of water-gas reaction

\( E_{{\text{gl}}} \) :

Volumetric enthalpy flux between gas and liquid, \( \left( {\text{W}\,\text{m}^{ - 3} } \right) \)

\( f_{\text{o}} \) :

Fraction conversion of iron ore

\( F \) :

Liquid mass flow rate \( \left( {\text{kg}\,\text{s}^{ - 1} } \right) \)

\( {\mathbf{F}} \) :

Interaction force per unit volume \( \left( {\text{kg m}^{ - 2} \text{ s}^{ - 2} } \right) \)

\( {\mathbf{g}} \) :

Gravitational acceleration \( \left( {\text{m s}^{ - 2} } \right) \)

\( h_{ij} \) :

Heat transfer coefficient between i and j phase \( \left( {\text{W m}^{ - 2} \text{ K}^{ - 1} } \right) \)

\( H \) :

Enthalpy \( \left( {\text{J}\,\text{kg}^{ - 1} } \right) \)

\( \Delta H \) :

Reaction heat \( \left( {\text{J}\,\text{mol}^{ - 1} } \right) \)

\( k \) :

Thermal conductivity \( \left( {\text{W m}^{ - 1} \text{ K}^{ - 1} } \right) \)

\( k_{1} \) :

Rate constant of indirect reduction of iron ore by \( {\text{CO}} \)\( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( k_{2} \) :

Rate constant of direction reduction of molten wustite \( \left( {\text{mol}\,\text{m}^{ - 2} \,\text{s}^{ - 1} } \right) \)

\( k_{3} \) :

Rate constant of solution loss reaction by \( {\text{CO}} \)\( \left( {\text{m}^{3} \text{ kg}^{ - 1} \text{ s}^{ - 1} } \right) \)

\( k_{5} \) :

Rate constant of indirect reduction of iron ore by \( {\text{H}}_{ 2} \)\( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( k_{6} \) :

Rate constant of water gas reaction \( \left( {\text{m}^{3} \text{ kg}^{ - 1} \text{ s}^{ - 1} } \right) \)

\( k_{8} \) :

Rate constant of silica reduction reaction in slag \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( k_{\text{f}} \) :

Gas-film mass transfer coefficient \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( k_{{\text{f5}}} \) :

Gas-film mass transfer coefficient in indirect reduction of iron ore by\( {\text{H}}_{ 2} \)\( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( k_{{\text{f6}}} \) :

Gas-film mass transfer coefficient water–gas reaction \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( K_{1} \) :

Equilibrium constant of indirect reduction of iron ore by \( {\text{CO}} \)

\( K_{5} \) :

Equilibrium constant of indirect reduction of iron ore by \( {\text{H}}_{ 2} \)

\( LT \) :

Liquid temperature (K)

\( m_{\text{batch}} \) :

Weight for one ore layer and one coke layer (kg)

\( m_{\text{batch,ore}} \) :

Weight for one ore layer (kg)

\( m_{\text{batch,coke}} \) :

Weight for one coke layer (kg)

\( M_{i} \) :

Molar mass of \( i{\text{th}} \) species in gas phase

\( M_{{\text{sm}}} \) :

Molar mass of \( {\text{FeO}} \) or flux in solid phase \( \left( {{\text{kg}}\,{\text{mol}}^{ - 1} } \right) \)

\( N_{{\text{coke}}} \) :

Number of coke particles in unit volume of bed \( \left( {\text{m}^{ - 3} } \right) \)

\( N_{{\text{ore}}} \) :

Number of iron oxide particles in unit volume of bed \( \left( {\text{m}^{ - 3} } \right) \)

\( p \) :

Pressure \( \left( {\text{Pa}} \right) \)

\( P \) :

Productivity \( \left( {\text{tHM m}^{ - 3} \text{ day}^{ - 1} } \right) \)

\( P_{i,j} \) :

Proportion of liquid flowing from ith point to jth point

\( {\text{Pe}} \) :

Peclet number

\( { \Pr } \) :

Prandtl number

\( R \) :

Gas constant \( \left(8.314 {\text{ J mol}}^{ - 1} \text{K}^{-1} \right) \)

\( R_{k}^{*} \) :

Reaction rate for \( k\text{th} \)reaction \( \left( {{\text{mol}}\,{\text{m}}^{ - 3} \,{\text{s}}^{ - 1} } \right) \)

\( {\text{Re}} \) :

Reynolds number

\( S \) :

Source term

\( {\text{Sc}} \) :

Schmidt number

\( Sh_{r}^{ * } \) :

Normalized shrinkage ratio

\( t_{\text{s}} \) :

Timeline (s)

\( t_{batch} \) :

Total batch time for one ore layer and one coke layer (s)

\( T \) :

Temperature (K)

\( {\text{TGT}} \) :

Top gas temperature (K)

\( {\text{TGUF}} \) :

Top gas utilization factor (pct)

\( u_{\text{feed}} \) :

Burden feed velocity \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( {\mathbf{u}} \) :

Velocity \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( \overline{{\mathbf{U}}}_{\text{l}} \) :

Liquid main velocity \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( {\mathbf{U}}_{\text{S}} \) :

Stochastic velocity of liquid dispersion flow, \( \left( {\text{m}\,\text{s}^{ - 1} } \right) \)

\( V_{\text{B}} \) :

Bed volume (m3)

\( V_{{\text{cell}}} \) :

Volume of control volume (m3)

\( y_{i} \) :

Mole fraction of ith species in gas phase

\( y_{{\text{CO}}} ,y_{{\text{H}_{\text{2}} }} \) :

Molar fraction of \( {\text{CO}} \) and H2

\( y_{{\text{CO}}}^{*} ,y_{{\text{H}_{\text{2}} }}^{*} \) :

Molar fraction of \( {\text{CO}} \) and \( {\text{H}}_{ 2} \) in equilibrium state for indirect reaction

\( y_{{\text{CO}_{\text{2}} }} ,y_{{\text{H}_{\text{2}} \text{O}}} \) :

Molar fraction of \( {\text{CO}}_{ 2} \) and H2O(g)

\( \alpha \) :

Specific surface area, \( \text{m}^{2} \,\text{m}^{ - 3} \); relaxation factor; liquid dispersion angle, rad

\( \beta \) :

Mass increase coefficient of fluid phase associated with reactions, \( \left( {\text{kg mol}^{ - 1} } \right) \)

\( \varGamma \) :

Diffusion coefficient

\( \delta \) :

Distribution coefficient

\( \varepsilon \) :

Volume fraction

\( \eta \) :

Fractional acquisition of reaction heat

\( {\mathbf{\rm I}} \) :

Identity tensor

\( \mu \) :

Viscosity \( \left( {\text{kg}\,\text{m}^{ - 1} \,\text{s}^{ - 1} } \right) \)

\( \xi_{\text{ore}} ,\xi_{\text{coke}} \) :

Local ore, coke volume fraction

\( \rho \) :

Density \( \left( {\text{kg}\,\text{m}^{ - 3} } \right) \)

\( \rho_{\text{bulk}} \) :

Bulk density of burden at BF throat, \( \left( {\text{kg}\,\text{m}^{ - 3} } \right) \)

\( \varvec{\tau} \) :

Stress tensor (Pa)

\( \varphi \) :

General variable

\( \omega \) :

Mass fraction

\( \text{e} \) :

Effective

\( \text{g} \) :

Gas

\( i \) :

Identifier (g, s or l)

\( i\text{,}m \) :

mth species in i phase

\( j \) :

Identifier (g, s or l)

\( k \) :

kth reaction

\( \text{l} \) :

Liquid

\( \text{l,d} \) :

Dynamic liquid

\( \text{sm} \) :

FeO or flux in solid phase

\( \text{e} \) :

Effective

\( \text{g} \) :

Gas

\( \text{l} \) :

Liquid

\( \text{s} \) :

Solid

\( T \) :

Transpose

References

  1. 1.

    Y. Omori: Blast furnace phenomena and modelling. (Elsevier Science Pub. Co. Inc.,New York, NY 1987).

    Google Scholar 

  2. 2.

    X. F. Dong, A. B. Yu, J. Yagi and P. Zulli, ISIJ Int., 2007, vol. 47, pp. 1553-70.

    CAS  Article  Google Scholar 

  3. 3.

    S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, M. Osame, P. Sikström, L. S. Ökvist and J.-O. Wikstrom, ISIJ Int, 2013, vol. 53, pp. 2065-71.

    CAS  Article  Google Scholar 

  4. 4.

    Z. Y. Li, S. B. Kuang, A. Y. Yu, J. J. Gao, Y. H. Qi, D. L. Yan, Y. T. Li and X. M. Mao, Metall and Materi Trans B, 2018, vol. 49, pp. 1995-2010.

    CAS  Article  Google Scholar 

  5. 5.

    J. Yagi, ISIJ Int., 1993, vol. 33, pp. 619-39.

    CAS  Article  Google Scholar 

  6. 6.

    S. Ueda, S. Natsui, H. Nogami, J. Yagi and T. Ariyama, ISIJ Int., 2010, vol. 50, pp. 914-23.

    CAS  Article  Google Scholar 

  7. 7.

    T. Ariyama, S. Natsui, T. Kon, S. Ueda, S. Kikuchi and H. Nogami, ISIJ Int., 2014, vol. 54, pp. 1457-71.

    CAS  Article  Google Scholar 

  8. 8.

    S. B. Kuang, Z. Y. Li and A. B. Yu, Steel Res. Int., 2018, vol. 89, p. 1700071.

    Article  CAS  Google Scholar 

  9. 9.

    T. Okosun, A. K. Silaen and C. Q. Zhou, Steel Res Int, 2019, vol. 90, p. 1900046.

    Article  CAS  Google Scholar 

  10. 10.

    H. Nogami and J. Yagi, ISIJ Int., 2004, vol. 44, pp. 1826-34.

    CAS  Article  Google Scholar 

  11. 11.

    H. Nogami, P. R. Austin, J.-i. Yagi and K. Yamaguchi, ISIJ Int, 2004, vol. 44, pp. 500-09.

    CAS  Article  Google Scholar 

  12. 12.

    J. Chen, T. Akiyama, H. Nogami, J. Yagi and H. Takahashi, ISIJ Int., 1993, vol. 33, pp. 664-71.

    CAS  Article  Google Scholar 

  13. 13.

    Z. Y. Zhou, A. B. Yu and P. Zulli, Prog. Comput. Fluid. Dy., 2004, vol. 4, pp. 39-45.

    Article  Google Scholar 

  14. 14.

    S. J. Zhang, A. B. Yu, P. Zulli, B. Wright and U. Tuzun, ISIJ Int., 1998, vol. 38, pp. 1311-19.

    CAS  Article  Google Scholar 

  15. 15.

    P. R. Austin, H. Nogami and J. Yagi, ISIJ Int., 1997, vol. 37, pp. 748-55.

    CAS  Article  Google Scholar 

  16. 16.

    H. Nogami, Y. Kashiwaya and D. Yamada, ISIJ Int., 2012, vol. 52, pp. 1523-27.

    CAS  Article  Google Scholar 

  17. 17.

    S. J. Chew, P. Zulli and A. B. Yu, ISIJ Int., 2001, vol. 41, pp. 1112-21.

    CAS  Article  Google Scholar 

  18. 18.

    G. X. Wang, S. J. Chew, A. B. Yu and P. Zulli, Metall. Mater. Trans. B, 1997, vol. 28, pp. 333-43.

    CAS  Article  Google Scholar 

  19. 19.

    G. X. Wang, J. D. Litster and A. B. Yu, ISIJ Int., 2000, vol. 40, pp. 627-36.

    CAS  Article  Google Scholar 

  20. 20.

    J. A. de Castro, H. Nogami and J. Yagi, ISIJ Int., 2000, vol. 40, pp. 637-46.

    Article  Google Scholar 

  21. 21.

    Y. Hashimoto, Y. Sawa, Y. Kitamura, T. Nishino and M. Kano, ISIJ Int, 2018, vol. 58, pp. 2210-18.

    CAS  Article  Google Scholar 

  22. 22.

    X. F. Dong, A. B. Yu, S. J. Chew and P. Zulli, Metall. Mater. Trans. B, 2010, vol. 41, pp. 330-49.

    CAS  Article  Google Scholar 

  23. 23.

    K. Yang, S. Choi, J. Chung and J. Yagi, ISIJ Int, 2010, vol. 50, pp. 972-80.

    CAS  Article  Google Scholar 

  24. 24.

    D. Fu, Y. Chen, Y. F. Zhao, J. D’Alessio, K. J. Ferron and C. Q. Zhou, Appl. Therm. Eng., 2014, vol. 66, pp. 298-308.

    CAS  Article  Google Scholar 

  25. 25.

    P. Zhou, H. L. Li, P. Y. Shi and C. Q. Zhou, Appl. Therm. Eng., 2016, vol. 95, pp. 296-302.

    CAS  Article  Google Scholar 

  26. 26.

    S. B. Kuang, Z. Y. Li, D. L. Yan, Y. H. Qi and A. B. Yu, Miner. Eng., 2014, vol. 63, pp. 45-56.

    CAS  Article  Google Scholar 

  27. 27.

    J. A. de Castro, A. J. da Silva, Y. Sasaki and J. Yagi, ISIJ Int., 2011, vol. 51, pp. 748-58.

    Article  Google Scholar 

  28. 28.

    X. F. Dong, S. J. Zhang, D. Pinson, A. B. Yu and P. Zulli, Powder Technol., 2004, vol. 149, pp. 10-22.

    CAS  Article  Google Scholar 

  29. 29.

    L. Shao and H. Saxén, ISIJ Int., 2013, vol. 53, pp. 988-94.

    CAS  Article  Google Scholar 

  30. 30.

    D. Rangarajan, T. Shiozawa, Y. S. Shen, J. S. Curtis and A. B. Yu, Ind. Eng. Chem. Res., 2014, vol. 53, pp. 4983-90.

    CAS  Article  Google Scholar 

  31. 31.

    M. Y. Gu, G. Chen, M. C. Zhang, D. Huang, P. Chaubal and C. Q. Zhou, Appl. Math. Model., 2010, vol. 34, pp. 3536-46.

    Article  Google Scholar 

  32. 32.

    J. A. de Castro, H. Nogami and J. Yagi, ISIJ Int., 2002, vol. 42, pp. 44-52.

    Article  Google Scholar 

  33. 33.

    K. Takatani, T. Inada and Y. Ujisawa, ISIJ Int., 1999, vol. 39, pp. 15-22.

    CAS  Article  Google Scholar 

  34. 34.

    P. R. Austin, H. Nogami and J. Yagi, ISIJ Int., 1997, vol. 37, pp. 458-67.

    CAS  Article  Google Scholar 

  35. 35.

    S. J. Chew, P. Zulli and A. B. Yu, ISIJ Int., 2001, vol. 41, pp. 1122-30.

    CAS  Article  Google Scholar 

  36. 36.

    Z. Y. Li, S. B. Kuang, D. L. Yan, Y. H. Qi and A. B. Yu, Metall. Mater. Trans. B, 2017, vol. 48, pp. 602-18.

    Article  CAS  Google Scholar 

  37. 37.

    Y. S. Shen, B. Y. Guo, S. Chew, P. Austin and A. B. Yu, Metall Mater Trans B, 2015, vol. 46, pp. 432-48.

    Article  CAS  Google Scholar 

  38. 38.

    H. Zhao, M. Zhu, P. Du, S. Taguchi and H. Wei, ISIJ Int., 2012, vol. 52, pp. 2177-85.

    CAS  Article  Google Scholar 

  39. 39.

    G. Zhao, S. Cheng, W. Xu and C. Li, ISIJ Int, 2015, vol. 55, pp. 2566-75.

    CAS  Article  Google Scholar 

  40. 40.

    J. Xu, S. Wu, M. Kou, L. Zhang and X. Yu, Appl Math Model, 2011, vol. 35, pp. 1439-55.

    Article  Google Scholar 

  41. 41.

    A. Polinov, A. Pavlov, O. Onorin, N. Spirin and I. Gurin, Metallurgist, 2018, 62, 418-24.

    CAS  Article  Google Scholar 

  42. 42.

    K. Nishioka, Y. Ujisawa and K. Takatani, Nippon Steel & Sumitomo Metal Technical Report No. 120 2018.

  43. 43.

    Z. Y. Li, S. B. Kuang, S. D. Liu, J. Q. Gan, A. B. Yu, Y. T. Li and X. M. Mao, Powder Technol., 2019, vol. 353, pp. 385-97.

    CAS  Article  Google Scholar 

  44. 44.

    S. Natsui, T. Kikuchi and R. O. Suzuki, Metall and Materi Trans B, 2014, vol. 45, pp. 2395-413.

    Article  CAS  Google Scholar 

  45. 45.

    T. Kon, S. Natsui, S. Ueda and H. Nogami, ISIJ Int., 2015, vol. 55, pp. 1284-90.

    CAS  Article  Google Scholar 

  46. 46.

    S. Natsui, T. Kikuchi, R. O. Suzuki, T. Kon, S. Ueda and H. Nogami, ISIJ Int., 2015, vol. 55, pp. 1259-66.

    CAS  Article  Google Scholar 

  47. 47.

    S. Natsui, K.-i. Ohno, S. Sukenaga, T. Kikuchi and R. O. Suzuki, ISIJ Int., 2018, vol. 58, pp. 282-91.

    CAS  Article  Google Scholar 

  48. 48.

    S. Natsui, A. Sawada, T. Kikuchi and R. O. Suzuki, ISIJ Int., 2018, vol. 58, pp. 1742-44.

    CAS  Article  Google Scholar 

  49. 49.

    S. Natsui, A. Sawada, K. Terui, Y. Kashihara, T. Kikuchi and R. O. Suzuki, ETSU TO HAGANE, 2018, vol. 104, pp. 347-57.

    Article  Google Scholar 

  50. 50.

    S. Natsui, A. Sawada, K. Terui, Y. Kashihara, T. Kikuchi and R. O. Suzuki, Chem Eng Sci, 2018, vol. 175, pp. 25-39.

    CAS  Article  Google Scholar 

  51. 51.

    J. Ferziger and M. Peric: Computational Methods for Fluid Dynamics. 3rd ed. (Springer, New York, 2002).

    Book  Google Scholar 

  52. 52.

    Y. S. Shen, B. Y. Guo, A. B. Yu, P. R. Austin and P. Zulli, Fuel, 2011, vol. 90, pp. 728-38.

    CAS  Article  Google Scholar 

  53. 53.

    S.-i. Nomura, T Iron Steel I Jpn, 1986, vol. 26, pp. 107-13.

    Article  Google Scholar 

  54. 54.

    G. Usera, A. Vernet and J. Ferré, Flow Turbul and Combust, 2008, vol. 81, pp. 471-95.

    Article  Google Scholar 

  55. 55.

    S. Natsui, S. Ueda, Z. Fan, N. Andersson, J. Kano, R. Inoue and T. Ariyama, ISIJ Int., 2010, vol. 50, pp. 207-14.

    CAS  Article  Google Scholar 

  56. 56.

    H. Takahashi, M. Tanno and J. Katayama, ISIJ Int., 1996, vol. 36, pp. 1354-59.

    CAS  Article  Google Scholar 

  57. 57.

    Z. Zhou, H. Zhu, A. Yu, B. Wright, D. Pinson and P. Zulli, ISIJ Int., 2005, vol. 45, pp. 1828-37.

    CAS  Article  Google Scholar 

  58. 58.

    S. J. Zhang, A. B. Yu, P. Zulli, B. Wright and P. Austin, Appl. Math. Model., 2002, vol. 26, pp. 141-54.

    Article  Google Scholar 

  59. 59.

    I. Muchi, Trans. ISIJ, 1967, vol. 7, pp. 223-37.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Australian Research Council (ARC) and the Baosteel Australia Research and Development Centre (BAJC) for the financial support of this work; the National Computational Infrastructure (NCI), Sunway TaihuLight, for the use of their high-performance computational facilities; and CAFFA3D for making a useful code available for free use and adaptation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shibo Kuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 24, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiao, L., Kuang, S., Yu, A. et al. Three-Dimensional Modeling of an Ironmaking Blast Furnace with a Layered Cohesive Zone. Metall Mater Trans B 51, 258–275 (2020). https://doi.org/10.1007/s11663-019-01745-3

Download citation