A Comparison of the Use of Ultrasonic Melt Treatment and Mechanical Vibration in the Manufacture of Al5Si5Zn Alloy Feedstock for Thixoforming

Abstract

The use of physical agents when casting aluminum alloys has proven to be an effective route for grain refinement and avoids the inconvenience of residual impurities left in the material when chemical agents are used. The application of ultrasonic waves to the molten metal before casting generates acoustic cavitation, which promotes extensive heterogeneous nucleation and contributes to degassing of the metal. In addition, the application of mechanical vibration during solidification has been proven to promote dendrite fragmentation, and therefore, grain refinement. The aim of this work is to evaluate microstructural refinement due to cavitation produced by ultrasonic melt treatment (UST) of Al5Si5Zn alloy (Al-5wt pctSi-5wt pctZn) and to compare the resulting microstructure with that achieved with and without simple mechanical vibration (MV) during casting so that the best manufacturing procedure for refining aluminum silicon feedstock for subsequent thixoforming can be identified. After casting, the alloy produced under each condition was partially melted to a 0.45 solid fraction to obtain a primary phase with a spheroidized microstructure. The rheological behavior of each semisolid slurry was also evaluated. Microstructural characterization was performed using optical and scanning electron microscopy. Mechanical performance was evaluated by means of tensile tests and hardness measurements. The use of ultrasonic stirring for 30 seconds resulted in slightly better mechanical performance than the other casting conditions. However, because of the short life expectancy of the sonotrodes, mechanical vibration can be considered a simpler, superior solution for feedstock production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    M.C. Flemings: Metall. Trans. A, 1991, vol. 22A, pp. 957-981. https://doi.org/10.1007/bf02661090

    CAS  Article  Google Scholar 

  2. 2.

    D.H. Kirkwood, M. Suéry, P. Kapranos, H.V. Atkinson and K.P. Young: Semi-Solid Processing of Alloys, Springer Series in Materials Science 124, Springer, Heidelberg, London, 2010, pp. 14–47. https://doi.org/10.1007/978-3-642-00706-4

  3. 3.

    D. Liu, H.V. Atkinson, and H. Jones: Acta Mater., 2005, vol. 53, pp. 3807-3819. https://doi.org/10.1016/j.actamat.2005.04.028

    CAS  Article  Google Scholar 

  4. 4.

    D. Zhang, H.V. Atkinson, H. Dong and K. Zhu: Metall. and Mater. Trans. A, 2017, vol. 48, pp. 4701-4712. https://doi.org/10.1007/s11661-017-4235-2

    CAS  Article  Google Scholar 

  5. 5.

    E.J. Zoqui, D.M Benati, C.T.W. Proni, and L.V. Torres: Calphad, 2016, vol. 52, pp. 98-109. https://doi.org/10.1016/j.calphad.2015.12.006

    CAS  Article  Google Scholar 

  6. 6.

    G.L. Brollo, D.V. Tamayo, L.V. Torres and E.J. Zoqui: Calphad, 2019, 67, 101671. https://doi.org/10.1016/j.calphad.2019.101671

    CAS  Article  Google Scholar 

  7. 7.

    D.H. Kirkwood: Int. Mater. Rev., 1994, Vol. 39-5, pp. 173-189. https://doi.org/10.1179/imr.1994.39.5.173

    Article  Google Scholar 

  8. 8.

    V. Laxmanan and M.C. Flemings: Metall. Trans. A, 1980, Vol. 11A, pp. 1927-1937. https://doi.org/10.1007/bf02655112

    CAS  Article  Google Scholar 

  9. 9.

    A. Ohno: Solidification – The Separation Theory and its Practical Applications, Springer-Verlag Berlin Heidelberg, New York, 1987, pp. 15-57.

    Google Scholar 

  10. 10.

    F. Taghavi, H. Saghafian, and Y.H.K. Kharrazi: Mater. and Design, 2009, Vol. 30, pp. 1604–1611. https://doi.org/10.1016/j.matdes.2008.07.032.

    CAS  Article  Google Scholar 

  11. 11.

    C.T.W. Proni, M.H. Robert, and E.J. Zoqui: Arch. Mater. Sci. Eng., 2015, 73 (2), pp. 82-93

    Google Scholar 

  12. 12.

    G.I. Eskin: Ultrasonic Treatment of Light Alloy Melts. Gordon and Breach Science Publishers, Amsterdam, 1998, pp. 18-240.

    Book  Google Scholar 

  13. 13.

    T.V. Atamanenko, D.G. Eskin, L. Zhang, and L. Katgerman: Metall. Mater. Trans. A, 2010, 41A (8): 2056-2066. https://doi.org/10.1007/s11661-010-0232-4

    CAS  Article  Google Scholar 

  14. 14.

    Y.I. Frenkel: Kinetic Theory of Liquid. Dover Publications, New York, 1959, pp. 170-488.

    Google Scholar 

  15. 15.

    G.I. Eskin: Ultrasonics Sonochemistry, 2001, Vol. 8(3), pp.319-325. https://doi.org/10.1016/s1350-4177(00)00074-2

    CAS  Article  Google Scholar 

  16. 16.

    Q. Han: Metall. and Mater. Trans. B, 2015, Vol. 46B, pp.1603-1614. https://doi.org/10.1007/s11663-014-0266-x

    CAS  Article  Google Scholar 

  17. 17.

    C.T.W. Proni, L.C. de Paula, L.V. Torres, and E.J. Zoqui: Solid State Phen. 2019, Vol. 285, pp. 339-344. https://doi.org/10.4028/www.scientific.net/ssp.285.339

    Article  Google Scholar 

  18. 18.

    C.T.W. Proni and E.J. Zoqui: Int. J. Mater. Res., 2017, 108(3) pp 228-236. https://doi.org/10.3139/146.111472.

    CAS  Article  Google Scholar 

  19. 19.

    ASTM E8/E8M-16: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016. www.astm.org, https://doi.org/10.1520/e0008_e0008m-16a. Accessed 24 Mar 2016.

  20. 20.

    E.J. Zoqui, M.T. Shehata, M. Paes, V. Kao and E. Es-Sadiqi: Mater. Sci. Eng. A, 2002, 325, pp. 38-53. https://doi.org/10.1016/s0921-5093(01)01401-0.

    Article  Google Scholar 

  21. 21.

    ASTM E112-13: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2013. www.astm.org, https://doi.org/10.1520/e0112-13. Accessed 1 Aug 2018.

  22. 22.

    N.A. Baena, T. Pabel, N.V. Sierra and D. Eskin: Mater Sci Forum, 2013, Vol. 765 pp 271-275. https://doi.org/10.4028/www.scientific.net/msf.765.271

    CAS  Article  Google Scholar 

  23. 23.

    L.C. de Paula and E.J. Zoqui: SN Applied Sciences, 2019, Vol. 1, pp. 394-409. https://doi.org/10.1007/s42452-019-0399-2.

    CAS  Article  Google Scholar 

  24. 24.

    ASM Handbook: Metallography and Microstructures, ASM Int., 2004. vol. IX. pp. 107–112. ISBN: 978-0-87170-706-2

  25. 25.

    J. E. Hatch: Aluminium: properties and physical metallurgy, Ohio: American Society for Metals, 1984. pp. 154-424.

    Google Scholar 

  26. 26.

    L. Zhang, D. G. Eskin, and L. Katgerman: J. Mater. Sci., 2011, 46: 5252–5259. https://doi.org/10.1007/s10853-011-5463-2

    CAS  Article  Google Scholar 

  27. 27.

    F. Czerwinski: Metall. Mater. Trans. B, 2018, 49(6), 3220-3257. https://doi.org/10.1007/s11663-018-1387-4

    CAS  Article  Google Scholar 

  28. 28.

    K.N. Campo and E.J. Zoqui: Metall. Mater. Trans. A, 2016, 47(4): 1792-1802. https://doi.org/10.1007/s11661-016-3339-4

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian research funding agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo—Project 2015/22143-3), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—PQ 304921/2017-3) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001) for providing financial support for this study. The authors are also indebted to the Faculty of Mechanical Engineering at the University of Campinas and Sonitron Ultra Sônica Ltda.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. J. Zoqui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 17, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Proni, C.T.W., Brollo, G.L. & Zoqui, E.J. A Comparison of the Use of Ultrasonic Melt Treatment and Mechanical Vibration in the Manufacture of Al5Si5Zn Alloy Feedstock for Thixoforming. Metall Mater Trans B 51, 306–317 (2020). https://doi.org/10.1007/s11663-019-01741-7

Download citation