Effect of Slag Composition on the Deoxidation and Desulfurization of Inconel 718 Superalloy by ESR Type Slag Without Deoxidizer Addition

Abstract

Effects of slag composition and alloy content as well as temperature on the deoxidation and desulfurization of Inconel 718 superalloy by CaF2-CaO-Al2O3-MgO-TiO2 ESR-type slag without the addition of a deoxidizer were systematically investigated by laboratory-scale experiments and the developed mass transfer model. The model predictions were verified through comparison with experimental results in a double-layer crucible. The results showed that the oxygen content decreased with an increase of CaO, MgO and CaF2 content in the slag at 1773 K, and CaO has a great influence on the deoxidation of Inconel 718 alloy compared with MgO and CaF2 in slag, which was responsible for the decrease in equilibrium content of sulfur in the Inconel 718 alloy. The total oxygen and sulfur content decreased from 33.2 and 20 ppm in master alloys to about 10 and 6 ppm in alloy ingots at 1773 K, respectively. Properly increasing the Al and Ti content only lowered the oxygen and sulfur content in the nickel-based alloy to a limited extent when satisfying the mechanical properties of the Inconel 718 alloy. The interfacial oxygen content increased with increasing temperature, giving rise to a decrease in the desulfurization ratio \( \left( {{{[{\text{pct S}}]_{t = t} } \mathord{\left/ {\vphantom {{[{\text{pct S}}]_{t = t} } {[{\text{pct S}}]_{t = 0} }}} \right. \kern-0pt} {[{\text{pct S}}]_{t = 0} }}} \right) \). These results show that the lower temperature favored desulfurization of the nickel-based alloy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    A. Kracke and A. Allvac. Superalloys, the most successful alloy system of modern times-past, present and future. In 7th international symposium on superalloy 718 and derivatives. The Minerals, Metals and Materials Society, 2010, pp. 13–50.

  2. 2.

    2. E.A. Loria: JOM, 1992, vol. 44, pp. 33-36.

    CAS  Article  Google Scholar 

  3. 3.

    3. M. Rahman, W.K.H. Seah and T.T. Teo: J. Mater. Process. Tech., 1997, vol. 63, pp. 199-204.

    Article  Google Scholar 

  4. 4.

    4. G.W. Meetham: J. Mater. Sci., 1991, vol. 26, pp. 853-60.

    CAS  Article  Google Scholar 

  5. 5.

    5. A. Thomas, M. El-Wahabi, J.M. Cabrera and J.M. Prado: J. Mater. Process. Tech., 2006, vol. 177, pp. 469-72.

    CAS  Article  Google Scholar 

  6. 6.

    C. Briant: Impurities in Engineering Materials: Impact, Reliability, and Control. Marcel Dekker, Inc., New York (2017).

    Book  Google Scholar 

  7. 7.

    7. W. Wallace, R.T. Holt and T. Terada: Metallography, 1973, vol. 6, pp. 511-26.

    CAS  Article  Google Scholar 

  8. 8.

    8. E.P. Whelan and M.S. Grzedzielski: Met. Technol., 1974, vol. 1, pp. 186-90.

    Article  Google Scholar 

  9. 9.

    9. W.R. Sun, S.R. Guo, D.Z. Lu and Z.O. Hu: Mater. Lett., 1997, vol. 31, pp. 195-200.

    CAS  Article  Google Scholar 

  10. 10.

    10. C.L. White, J.H. Schneibel and R.A. Padgett: Metall. Trans. A, 1983, vol. 14, pp. 595-610.

    CAS  Article  Google Scholar 

  11. 11.

    11. H.W. Song, S.R. Guo and Z.Q. Hu: Acta Metall. Sin., 1999, vol. 35, pp. 573-76.

    CAS  Google Scholar 

  12. 12.

    12. R.T. Holt and W. Wallace: Int. Met. Rev., 1976, vol. 21, pp. 1-24.

    CAS  Article  Google Scholar 

  13. 13.

    13. J. Alexander: Mater. Sci. Tech., 1985, vol. 1, pp. 167-70.

    CAS  Article  Google Scholar 

  14. 14.

    14. J.P. Niu, X.F. Sun, T. Jin, K.N. Yang, H.R. Guan and Z.Q. Hu: Mater. Sci. Tech., 2003, vol. 19, pp. 435-39.

    CAS  Article  Google Scholar 

  15. 15.

    15. W. Bian, H. Zhang, M. Gao, Q. Li, J. Li, T. Tao and H. Zhang: Vacuum, 2018, vol. 152, pp. 57-64.

    CAS  Article  Google Scholar 

  16. 16.

    Q. Li, H. Zhang, M. Gao, J. Li, T. Tao and H. Zhang: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 696-703.

    CAS  Article  Google Scholar 

  17. 17.

    17. H.B. Bai, H.R. Zhang, J.F. Weng, B. Kong and H. Zhang: Mater. Res. Innovations, 2014, vol. 18, pp. 357-62.

    Article  CAS  Google Scholar 

  18. 18.

    18. J.P. Niu, K.N. Yang, X.F. Sun, T. Jin, H.R. Guan and Z.Q. Hu: Rare Metal Mat. Eng., 2003, vol. 32, pp. 63-66.

    CAS  Google Scholar 

  19. 19.

    20. J. Li, H. Zhang, M. Gao, Q. Li, J. Zhang, B. Yang and H. Zhang: Rare Metals, 2018, https://doi.org/10.1007/s12598-018-1103-1.

    Article  Google Scholar 

  20. 20.

    21. A. Choudhury: ISIJ Int., 1992, vol. 32, pp. 563-74.

    CAS  Article  Google Scholar 

  21. 21.

    22. A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig and J. Bohacek: Steel Res. Int., 2018, vol. 89, pp. 1700100.

    Article  CAS  Google Scholar 

  22. 22.

    23. A.K. Vaish, G.V.R. Iyer, P.K. De, B.A. Lakra, A.K. Chakrabarti and P. Ramachandrarao: J. Metall. Mater. Sci., 2000, vol. 42, pp. 11-29.

    CAS  Google Scholar 

  23. 23.

    Z.H. Jiang, Y.W. Dong, X. Geng and F.B. Liu: Electroslag Metallurgy. Science Press, Beijing, 2015.

    Google Scholar 

  24. 24.

    A. Mitchell: J. Vac. Sci. Technol., 1970, vol. 6, pp. S63-73.

    Article  Google Scholar 

  25. 25.

    S. Duan, X. Shi, F. Wang, M. Zhang, Y. Sun, H. Guo and J. Guo: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 3055-71.

    Article  CAS  Google Scholar 

  26. 26.

    27. W.E. Anable, R.H. Nafziger and D.C. Robinson: JOM-US, 1973, vol. 25, pp. 55-61.

    CAS  Article  Google Scholar 

  27. 27.

    28. H. Miska and M. Wahlster: Arch. Eisenhuttenwes., 1973, vol. 44, pp. 81-85.

    CAS  Google Scholar 

  28. 28.

    29. N.Q. Minh and T.B. King: Metall. Trans. B, 1979, vol. 10, pp. 623-29.

    Article  Google Scholar 

  29. 29.

    30. M. Kato, K. Hasegawa, S. Nomura and M. Inouye: Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 618-27.

    CAS  Article  Google Scholar 

  30. 30.

    31. M. Eissa and A. EI Mohammadi: Steel Res. Int., 1998, vol. 69, pp. 413-17.

    CAS  Article  Google Scholar 

  31. 31.

    32. T. Mattar, K. El-Fawakhry, H. Halfa and M. Eissa: Steel Res. Int., 2008, vol. 79, pp. 691-97.

    CAS  Article  Google Scholar 

  32. 32.

    33. D. Hou, Z. Jiang, Y. Dong, Y. Li, W. Gong and F. Liu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1885-97.

    Article  CAS  Google Scholar 

  33. 33.

    34. Y. Liu, Z. Zhang, G. Li, Q. Wang, L. Wang and B. Li: Steel Res. Int., 2017, vol. 88, pp. 1700058.

    Article  CAS  Google Scholar 

  34. 34.

    35. Y. Liu, X. Wang, G. Li, Q. Wang, Z. Zhang and B. Li: Vacuum, 2018, vol. 154, pp. 351-58.

    CAS  Article  Google Scholar 

  35. 35.

    36. R.S.E. Schneider, M. Molnar, S. Gelder, G. Reiter and C. Martinez: Steel Res. Int., 2018, vol. 89, pp. 1800161.

    Article  CAS  Google Scholar 

  36. 36.

    37. Q. Wang, Z. He, G. Li, B. Li, C. Zhu and P. Chen: Int. J. Heat Mass Tran., 2017, vol. 104, pp. 943-51.

    CAS  Article  Google Scholar 

  37. 37.

    38. Q. Wang, G. Li, Z. He and B. Li: Appl. Therm. Eng., 2017, vol. 114, pp. 874-86.

    CAS  Article  Google Scholar 

  38. 38.

    39. Q. Wang, Y. Liu, Z. He, G. Li and B. Li: ISIJ Int., 2017, vol. 57, pp. 329-36.

    CAS  Article  Google Scholar 

  39. 39.

    40. Q. Wang, Y. Liu, F. Wang, G. Li, B. Li and W. Qiao: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2649-63.

    Article  CAS  Google Scholar 

  40. 40.

    41. X.C. Chen, F. Wang, C.B. Shi, H. Ren and H.J. Guo: J. Mater. Metall., 2012, vol. 11, pp. 252-57.

    CAS  Google Scholar 

  41. 41.

    42. X. Chen, C. Shi, H. Guo, F. Wang, H. Ren and D. Feng: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1596-1607.

    Article  CAS  Google Scholar 

  42. 42.

    J. Morscheiser, L. Thönnessen, B. Friedrich and M. Recycling. Sulphur Control in Nickel-Based Superalloy Production. The 6th European metallurgical conference EMC 2011. Duesseldorf, 2011.

  43. 43.

    44. S. Duan, X. Shi, F. Wang, M. Zhang, B. Li, W. Yang, H. Guo and J. Guo: J. Mater. Res. Technol., 2019, vol. 8, pp. 2508-16.

    CAS  Article  Google Scholar 

  44. 44.

    45. J.X. Dong, X.S. Xie and R.G. Thompson: Metall. Mater. Trans. A., 2000, vol. 31, pp. 2135-44.

    CAS  Article  Google Scholar 

  45. 45.

    C. Wagner and J.F. Elliott: The physical chemistry of steelmaking. Wiley, New York, 1958.

    Google Scholar 

  46. 46.

    H.J. Guo: Metallurgical Physical Chemistry. Metallurgical Industry Press, Beijing, 2013.

    Google Scholar 

  47. 47.

    48. W. Lou and M. Zhu: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1706-22.

    Article  CAS  Google Scholar 

  48. 48.

    49. S.J. Li, G.G. Cheng, L. Yang, L. Chen, Q.Z. Yan and C.W. Li: ISIJ Int., 2017, vol. 57, pp. 713-22.

    CAS  Article  Google Scholar 

  49. 49.

    50. D. Hou, Z. Jiang, Y. Dong, W. Gong, Y. Cao and H. Cao: ISIJ Int., 2017, vol. 57, pp. 1400-09.

    CAS  Article  Google Scholar 

  50. 50.

    C. Wagner: Thermodynamics of Alloys. Addison-Wesley Press, Reading, 1952

    Google Scholar 

  51. 51.

    52. Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao and W. Gong: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1465-74.

    Article  CAS  Google Scholar 

  52. 52.

    53. Y. Kang, M. Kim, S. Lee, J. Cho, M. Park and H. Lee: Metall. Mater. Trans. B, 2013, vol. 44, pp. 309-16.

    Article  CAS  Google Scholar 

  53. 53.

    Z.B. Li: Electroslag Metallurgy Theory and Practice. Metallurgical Industry Press, Beijing, 2010.

    Google Scholar 

  54. 54.

    55. K. Mukai, Z. Li and K.C. Mills: Metall. Mater. Trans. B, 2005, vol. 36, pp. 255-62.

    CAS  Article  Google Scholar 

  55. 55.

    56. J.G. Kang, J.H. Shin, Y. Chung and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2123-35.

    Article  CAS  Google Scholar 

  56. 56.

    57. D. Hou, Z. Jiang, T. Qu, D. Wang, F. Liu and H. Li: J. Iron Steel Res. Int., 2019, vol. 26, pp. 20-31.

    CAS  Article  Google Scholar 

  57. 57.

    58. D. Park, I. Jung, P.C.H. Rhee and H. Lee: ISIJ Int., 2004, vol. 44, pp. 1669-78.

    CAS  Article  Google Scholar 

  58. 58.

    59. M. Valdez, G.S. Shannon and S. Sridhar: ISIJ Int., 2006, vol. 46, pp. 450-57.

    CAS  Article  Google Scholar 

  59. 59.

    60. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-46.

    CAS  Article  Google Scholar 

  60. 60.

    61. Y. Zhang, W. Chen, Y. Yang and A. Mclean: ISIJ Int., 2017, vol. 57, pp. 322-28.

    CAS  Article  Google Scholar 

  61. 61.

    62. J.S. Park and J.H. Park: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3225-30.

    Article  CAS  Google Scholar 

  62. 62.

    63. E. Andersson and D. Sichen: Steel Res. Int., 2010, vol. 80, pp. 544-51.

    Google Scholar 

  63. 63.

    C. Shi, J. Cho, D. Zheng and J. Li: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 627-36.

    CAS  Article  Google Scholar 

  64. 64.

    65. J.H. Park and D.J. Min: Steel Res. Int., 2004, vol. 75, pp. 807-11.

    CAS  Article  Google Scholar 

  65. 65.

    66. D. Roy, P.C. Pistorius and R.J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1086-94.

    Article  CAS  Google Scholar 

  66. 66.

    67. F. Patsiogiannis, U.B. Pal and R.S. Bogan: Can. Metall. Quart., 1994, vol. 33, pp. 305-12.

    CAS  Article  Google Scholar 

  67. 67.

    68. M. Ohta, T. Kubo and K. Morita: Tetsu-to-Hagane, 2003, vol. 89, pp. 742-49.

    CAS  Article  Google Scholar 

  68. 68.

    69. S. Ban-Ya, M. Hobo, T. Kaji, T. Itoh and M. Hino: ISIJ Int., 2004, vol. 44, pp. 1810-16.

    CAS  Article  Google Scholar 

  69. 69.

    70. Y. Kawai, R. Nakao and K. Mori: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 509-14.

    CAS  Article  Google Scholar 

  70. 70.

    71. S. Li, G. Cheng, Z. Miao, L. Chen, C. Li and X. Jiang: ISIJ Int., 2017, vol. 57, pp. 2148-56.

    CAS  Article  Google Scholar 

  71. 71.

    72. R.J. Pomfret and P. Grieveson: Can. Metall. Quart., 1983, vol. 22, pp. 287-99.

    CAS  Article  Google Scholar 

  72. 72.

    C.Z. Wang: Research Methods in Metallurgical Physical Chemistry. Metallurgical Industry Press, Beijing, 2013.

    Google Scholar 

  73. 73.

    74. S. Duan, X. Shi, M. Mao, W. Yang, S. Han, H. Guo and J. Guo: Sci. Rep., 2018, vol. 8, pp. 5232.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support from the National Natural Science Foundation of China (nos. U1560203, 51704021 and 51274031), Fundamental Research Funds for the Central Universities (FRF-TP-16-079A1) and Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials at the School of Metallurgical and Ecological Engineering at the University of Science and Technology Beijing (USTB), China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Han-Jie Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 23, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duan, SC., Shi, X., Zhang, MC. et al. Effect of Slag Composition on the Deoxidation and Desulfurization of Inconel 718 Superalloy by ESR Type Slag Without Deoxidizer Addition. Metall Mater Trans B 51, 353–364 (2020). https://doi.org/10.1007/s11663-019-01729-3

Download citation