Impact of the Electromagnetic Brake Position on the Flow Structure in a Slab Continuous Casting Mold: An Experimental Parameter Study

Abstract

Flow measurements are performed in a slab model for continuous casting of steel under the influence of a ruler type Electromagnetic Brake (EMBr). The Mini-LIMMCAST facility utilizes the low melting GaInSn alloy for flow modeling. Two-dimensional velocity distributions in the center plane of the rectangular mold with a cross section of \(300 \times 35\,\hbox {mm}^{2}\) are determined by means of the ultrasound Doppler velocimetry. This study especially focuses on the influence of the vertical position of the EMBr and its magnetic flux density as well as the effect of different immersion depths of the submerged entry nozzle. The horizontal flow velocity just below the free surface can effectively be reduced by choosing an optimal position of the EMBr, while an improper positioning even increases the near-surface velocity compared to the case without activated brake. A general braking effect of the EMBr on the submerged jet is not observed. The decisive mechanism for controlling the near-surface flow results from a modification of the jet geometry and a reorganization of the flow field. In terms of an effective flow control an appropriate positioning of the EMBr has at least the same significance as the regulation of the magnetic field strength.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    L. C. Hibbeler and B. G. Thomas: Iron Steel Technol., 2013, vol. 10 , pp. 121–136.

    Google Scholar 

  2. 2.

    B. G. Thomas (2018) Steel Res. Int., vol. 89:1700 312.

    Article  Google Scholar 

  3. 3.

    S.-M. Cho and B. G. Thomas: Metals, 2019, vol. 9, p. 471.

    CAS  Article  Google Scholar 

  4. 4.

    J. Kubota, N. Kubo, T. Ishii, M. Suzuki, N. Aramaki and R. Nishimachi: NKK Technical Review, 2001, vol. 85 p. 9.

    Google Scholar 

  5. 5.

    C. Ji, J. Li, H. Tang and S. Yang: Steel Res. Int., 2013, vol. 84, pp. 259–268.

    CAS  Article  Google Scholar 

  6. 6.

    S.-M. Cho, S.-H. Kim and B. G. Thomas: ISIJ Int., 2014, vol. 54, pp. 845–854.

    CAS  Article  Google Scholar 

  7. 7.

    S.-W. Han, H.-J. Cho, S.-Y. Jin, M. Sedén, I.-B. Lee and I. Sohn: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2757–2769.

    Article  Google Scholar 

  8. 8.

    T. Zhang, J. Yang and P. Jiang: Metals, 2019, vol. 9, p. 36.

    CAS  Article  Google Scholar 

  9. 9.

    J. Szekely and R. T. Yadoya: Metall. Trans., 1972, vol. 3, pp. 2673–2680.

    CAS  Article  Google Scholar 

  10. 10.

    H.-J. Odenthal, H. Pfeifer, I. Lemanowicz and R. Gorissen: Metall. Mater. Trans. B, 2002, vol. 33, pp. 163–172.

    CAS  Article  Google Scholar 

  11. 11.

    Y. Miki and S. Takeuchi: ISIJ Int., 2003, vol. 43, pp. 1548–1555.

    CAS  Article  Google Scholar 

  12. 12.

    Y. J. Jeon, H. J. Sung and S. Lee: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 121–130.

    CAS  Article  Google Scholar 

  13. 13.

    A. Idogawa, M. Sugizawa, S. Takeuchi, K. Sorimachi and T. Fujii: Materials Science and Engineering: A, 1993, vol. 173, pp. 293–297.

    Article  Google Scholar 

  14. 14.

    K. Okazawa, I. Sawada, H. Harada, T. Toh and E. Takeuchi: Tetsu-to-Hagane, 1998, vol. 84, pp. 490–495.

    CAS  Article  Google Scholar 

  15. 15.

    H. Harada, T. Toh, T. Ishii, K. Kaneko and E. Takeuchi: ISIJ Int., 2001, vol. 41, pp. 1236–1244.

    CAS  Article  Google Scholar 

  16. 16.

    K. Timmel, S. Eckert and G. Gerbeth: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 68–80.

    Article  Google Scholar 

  17. 17.

    Z.-Q. Zhang, J.-B. Yu, Z.-M. Ren and K. Deng: Adv. Manuf., 2015, vol. 3, pp. 212–220.

    CAS  Article  Google Scholar 

  18. 18.

    Z. Yu, Z.-Q. Zhang and Z.-M. Ren: Adv. Manuf., 2017, vol. 5, pp. 271–278.

    CAS  Article  Google Scholar 

  19. 19.

    K. H. Moon, H. K. Shin, B. J. Kim, J. Y. Chung, Y. S. Hwang and J. K. Yoon: ISIJ Int., 1996, vol. 36, pp. S201–S203.

    Article  Google Scholar 

  20. 20.

    Y.-S. Hwang, P.-R. Cha, H.-S. Nam, K.-H. Moon and J.-K. Yoon: ISIJ Int., 1997, vol. 37, pp. 659–667.

    CAS  Article  Google Scholar 

  21. 21.

    Y. Haiqi, W. Baofeng, L. Huiqin and L. Jianchao: Journal of Materials Processing Technology, 2008, vol. 202, pp. 179–187.

    Article  Google Scholar 

  22. 22.

    S. Garcia-Hernandez, R. D. Morales and E. Torres-Alonso: Ironmaking Steelmaking, 2010, vol. 37, pp. 360–368.

    CAS  Article  Google Scholar 

  23. 23.

    X. Miao, K. Timmel, D. Lucas, Z. Ren, S. Eckert and G. Gerbeth: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 954–972.

    Article  Google Scholar 

  24. 24.

    R. Chaudhary, B. G. Thomas and S. P. Vanka: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 532–553.

    Article  Google Scholar 

  25. 25.

    R. Singh, B. G. Thomas and S. P. Vanka: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1201–1221.

    Article  Google Scholar 

  26. 26.

    B. G. Thomas, R. Singh, S. P. Vanka, K. Timmel, S. Eckert and G. Gerbeth: J. Manuf. Sci. Prod., 2015, vol. 15, pp. 93–104.

    CAS  Google Scholar 

  27. 27.

    Z. Liu, A. Vakhrushev, M. Wu, E. Karimi-Sibaki, A. Kharicha, A. Ludwig and B. Li: Metals, 2018, vol. 8, p. 609.

    Article  Google Scholar 

  28. 28.

    C.Y. Ho and T.K. Chu: Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels. Technical Report 45, Cindas, Purdue University, West Lafayette, 1977.

  29. 29.

    I. Jimbo and A. W. Cramb: Metall. Trans. B, 1993, vol. 24, pp. 5–10.

    Article  Google Scholar 

  30. 30.

    M. Korolczuk-Hejnak, P. Migas and W. Ślęzak: J.Phys.: Conf. Ser., 2015, vol. 602, p. 012 037.

    Article  Google Scholar 

  31. 31.

    Z. Li, K. Mukai, M. Zeze and K. C. Mills: J. Mater. Sci., 2005, vol. 40, pp. 2191–2195.

    CAS  Article  Google Scholar 

  32. 32.

    Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth and R. Novakovic: J. Chem. Eng. Data, 2014, vol. 59, pp. 757–763.

    CAS  Article  Google Scholar 

  33. 33.

    VDI, editor: VDI-Wärmeatlas, 11th edn., Springer, Berlin, 2013.

  34. 34.

    K. Timmel, S. Eckert, G. Gerbeth, F. Stefani and T. Wondrak: ISIJ Int., 2010, vol. 50, pp. 1134–1141.

    CAS  Article  Google Scholar 

  35. 35.

    K. Timmel, C. Kratzsch, A. Asad, D. Schurmann, R. Schwarze and S. Eckert: IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 228 p. 012 019.

    Article  Google Scholar 

  36. 36.

    Y. Takeda: Nuclear Engineering and Design, 1991, vol. 126, pp. 277–284.

    Article  Google Scholar 

  37. 37.

    S. Eckert, A. Cramer and G. Gerbeth: in R. Moreau, editor, Magnetohydrodynamics, vol. 80, Springer Netherlands, Dordrecht, 2007, , pp. 275–294.

    Google Scholar 

  38. 38.

    Evonik Industries AG: Technical Information PLEXIGLAS®, Evonik Industries AG, Essen, 2013.

    Google Scholar 

  39. 39.

    N. B. Morley, J. Burris, L. C. Cadwallader and M. D. Nornberg: Rev. Sci. Instrum., 2008, vol. 79, p. 056 107.

    Google Scholar 

  40. 40.

    J. Krautkrämer and H. Krautkrämer: Werkstoffprüfung mit Ultraschall, 5th ed., Springer, Berlin, Heidelberg, 1986.

    Book  Google Scholar 

  41. 41.

    Signal Processing S.A.: DOP3000-3010 Series User’s Manual, Switzerland, 2017.

  42. 42.

    B. Li and F. Tsukihashi: ISIJ Int., 2006, vol. 46, pp. 1833–1838.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dennis Schurmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 27, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schurmann, D., Glavinić, I., Willers, B. et al. Impact of the Electromagnetic Brake Position on the Flow Structure in a Slab Continuous Casting Mold: An Experimental Parameter Study. Metall Mater Trans B 51, 61–78 (2020). https://doi.org/10.1007/s11663-019-01721-x

Download citation