Meshless Method for Nonuniform Heat-Transfer/Solidification Behavior of Continuous Casting Round Billet


Numerical simulation is the primary approach to evaluate the complex solidification behavior for the continuous casting (CC) process, in which the methods based on the mesh and topology technique have been widely used to solve field variables. For the traditional techniques, such as the finite difference, finite element, and boundary element methods, it is arduous or even impossible to deal with complicated problems that involve multiphase coupling, interface tracking/reconstruction, and self-adaptation due to the inherent weaknesses in the grid structure and mesh dependence. Hence, the present work explores a meshless calculation method for the two-dimensional unsteady heat-transfer problem and proposes an element-free Galerkin (EFG) model for solving heat transfer inside the CC mold based on the moving least-squares approximation. The temperature functions are approximated and constructed by a linear basis and cubic spline weight function over a set of rectangular supporting domain; then, the discrete heat-transfer governing equation based on the EFG method is deduced. The heat flux measured in the real casting process is set as the boundary condition to calculate the nonuniform solidification of the round billet. The calculated results demonstrate that the shell thickness is consistent with that obtained by the square root law of solidification. In addition, the high heat flux region near the meniscus directly determines the growth characteristics of the initial billet shell, which ultimately results in the overall nonuniformity of the shell. The EFG method has the characteristics of fast convergence, high computational accuracy, and great discrete flexibility; it also provides a novel and effective approach for subsequent thermomechanical coupling and crack propagation analysis in the CC process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    F. Du, X. Wang, X. Han, J. Xu, and M. Yao: Ironmak. Steelmak., 2018, vol. 45, pp. 350–55.

    CAS  Article  Google Scholar 

  2. 2.

    P.H. Hu, X.D. Wang, J.J. Wei, M. Yao, and Q.T. Guo: ISIJ Int., 2018, vol. 58, pp. 892–98.

    CAS  Article  Google Scholar 

  3. 3.

    A.S.M. Jonayat and B.G. Thomas: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1842–64.

    Article  Google Scholar 

  4. 4.

    H. Cheng, M.J. Peng, and Y.M. Cheng: Int. J. Numer. Methods Eng., 2018, vol. 114, pp. 321–45.

    Article  Google Scholar 

  5. 5.

    S. Garg and M. Pant: J. Therm. Stresses, 2017, vol. 40, pp. 846–65.

    Article  Google Scholar 

  6. 6.

    J.P. Zhang, S.S. Wang, S.G Gong, Q.S. Zuo, and H.Y. Hu: Eng. Anal. Bound. Elem., 2019, vol. 101, pp. 198–213.

    Article  Google Scholar 

  7. 7.

    L. Zhang, H.F. Shen, Y.M. Rong, and T.Y. Huang: Mater. Sci. Eng. A, 2007, vol. 466, pp. 71–78.

    Article  Google Scholar 

  8. 8.

    L. Zhang, Y.M. Rong, H.F. Shen, and T.Y. Huang: J. Mater. Process. Technol., 2007, vol. 192, pp. 511–17.

    Article  Google Scholar 

  9. 9.

    R. Vertnik and B. Sarler: Int. J. Cast Met. Res., 2009, vol. 22, pp. 311–13.

    CAS  Article  Google Scholar 

  10. 10.

    M. Alizadeh, S.A.J. Jahromi, and S.B. Nasihatkon: ISIJ Int., 2010, vol. 50, pp. 411–17.

    CAS  Article  Google Scholar 

  11. 11.

    X. Zhang, X.H. Liu, K.Z. Song, and M.W. Lu: Int. J. Numer. Methods Eng., 2001, vol. 51, pp. 1089–1100.

    Article  Google Scholar 

  12. 12.

    G.R. Liu and Y.T. Gu: An Introduction to Meshfree Methods and Their Programming, 1st ed., Springer, Dordrecht, 2005, pp. 54–111.

    Google Scholar 

  13. 13.

    S.S. Pandey, P.K. Kasundra, and S.D. Daxini: Int. J. Theor. Appl. Res. Mech. Eng., 2013, vol. 2, pp. 85–89.

    Google Scholar 

  14. 14.

    G.R. Liu: Mesh Free Methods Moving Beyond the Finite Element Method, 1st ed., CRC Press LLC, Boca Raton, FL, 2002, pp. 53–265.

    Book  Google Scholar 

  15. 15.

    J.C. Hostos, A.D. Bencomo, and E.S. Cabrera: Therm. Stresses, 2017, 41, 160–81.

    Article  Google Scholar 

  16. 16.

    T. Belytschko, Y.Y. Lu, and L. Gu: Int. J. Numer. Methods Eng., 1994, vol. 37, pp. 229–56.

    Article  Google Scholar 

  17. 17.

    V.P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot: Math. Comput. Simul., 2008, vol. 79, pp. 763–813.

    Article  Google Scholar 

  18. 18.

    T.J.R. Hughes: Comput. Meth. Appl. Mech. Eng., 1977, vol. 10, pp. 135–39.

    Article  Google Scholar 

  19. 19.

    B. Lally, L. Biegler, and H. Henein: Metall. Mater. Trans. B, 1990, vol. 21B, pp. 761–70.

    CAS  Article  Google Scholar 

  20. 20.

    H.B. Yin, M. Yao, and D.C. Fang: ISIJ Int., 2006, vol. 46, pp. 539–45.

    Article  Google Scholar 

  21. 21.

    X.Z. Zhang and L.J. Xu: Iron Steel, 2005, vol. 40, pp. 25–29.

    Google Scholar 

Download references


The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51474047); the Fundamental Research Funds for the Central Universities and the Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province) are also gratefully acknowledged.

Author information



Corresponding author

Correspondence to Xudong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 2, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Wang, X., Wang, N. et al. Meshless Method for Nonuniform Heat-Transfer/Solidification Behavior of Continuous Casting Round Billet. Metall Mater Trans B 51, 236–246 (2020).

Download citation