Effect of Al2O3/(B2O3 + Na2O) Ratio on CaO-Al2O3-Based Mold Fluxes: Melting Property, Viscosity, Heat Transfer, and Structure

Abstract

CaO-Al2O3-based mold fluxes, which are under development for the continuous casting of high-Al steel, contain fluxing compounds, such as Na2O and B2O3. The reaction between [Al] and the fluxing agents in mold fluxes leads to an increase in Al2O3 and a decrease in B2O3 and Na2O concentrations, changing the properties of mold fluxes. The effect of the Al2O3/(B2O3 + Na2O) ratio on the melting properties, viscosity, heat transfer, and structure of the CaO-Al2O3-based mold fluxes is presented in this work. The increase of the Al2O3/(B2O3 + Na2O) ratio in the fluxes raised the melting temperature and high-temperature viscosity of mold fluxes but decreased the heat transfer rate across the flux disks. It also enhanced the degree of polymerization by promoting the formation of 3-D aluminate structure, which accounted for the change of the viscous behavior.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    1. O. Grässel, L. Krüger, G. Frommeyer and L. W. Meyer: Int. J. Plasticity., 2000, vol.16, pp. 1391-409.

    Google Scholar 

  2. 2.

    2. D. R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters and D. Raabe: Acta Mater., 2013, vol.61, pp. 494-510.

    CAS  Google Scholar 

  3. 3.

    3. K. Sato, M. Ichinose, Y. Hirotsu and Y. Inoue: ISIJ Int., 1989, vol.29, pp. 868-77.

    CAS  Google Scholar 

  4. 4.

    4. M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park, H.-G. Lee and Y.-B. Kang: Metall. Mater. Trans. B, 2013, vol.44, pp. 299-308.

    Google Scholar 

  5. 5.

    5. Y.-B. Kang, M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park and H.-G. Lee: Metall. Mater. Trans. B, 2013, vol.44, pp. 309-16.

    Google Scholar 

  6. 6.

    6. J.-W. Cho, K. Blazek, M. Frazee, H. Yin, J. H. Park and S.-W. Moon: ISIJ Int., 2013, vol.53, pp. 62-70.

    Google Scholar 

  7. 7.

    7. K. Blazek, H. Yin, G. Skoczylas, M. McClymonds and M. Frazee: Iron Steel Tech., 2011, vol.8, pp. 232-40.

    Google Scholar 

  8. 8.

    8. Q. Liu, G. Wen, J. Li, X. Fu, P. Tang and W. Li: Ironmak. Steelmak., 2014, vol.41, pp. 292-97.

    CAS  Google Scholar 

  9. 9.

    9. J. Yang, J. Zhang, O. Ostrovski, C. Zhang and D. Cai: La Metallurgia Italiana, 2019, vol.1, pp. 12-19.

    Google Scholar 

  10. 10.

    10. K. Morita, K. Kume and N. Sano: Scand. J. Metall., 2002, vol.31, pp. 178-83.

    CAS  Google Scholar 

  11. 11.

    11. B. Hallstedl: J. Am. Ceram. Soc., 1990, vol.73, pp. 15-23.

    Google Scholar 

  12. 12.

    T. Wu, S. P. He, Y. T. Guo and Q. Wang: Characterization of minerals, metals, and materials. TMS, San Diego, 2014, pp. 265-70.

    Google Scholar 

  13. 13.

    13. W. Yan, W. Chen, Y. Yang, C. Lippold and A. McLean: Ironmak. Steelmak., 2015, vol.42, pp. 698-704.

    CAS  Google Scholar 

  14. 14.

    14. J. Yang, J. Zhang, O. Ostrovski, C. Zhang and D. Cai: Metall. Mater. Trans. B, 2019, vol.50, pp. 291-303.

    Google Scholar 

  15. 15.

    15. D. Xiao, W. Wang and B. Lu: Metall. Mater. Trans. B, 2015, vol.46, pp. 873-81.

    CAS  Google Scholar 

  16. 16.

    16. B. Lu and W. Wang: Metall. Mater. Trans. B, 2015, vol.46, pp. 852-62.

    Google Scholar 

  17. 17.

    17. J. Qi, C. Liu and M. Jiang: J. Non-Cryst. Solids, 2017, vol.475, pp. 101-07.

    CAS  Google Scholar 

  18. 18.

    18. L. Zhou, H. Li, W. Wang, D. Xiao, L. Zhang and J. Yu: Metall. Mater. Trans. B, 2018, vol.49, pp. 2232-40.

    Google Scholar 

  19. 19.

    19. L. Wang, Y. Cui, J. Yang, C. Zhang, D. Cai, J. Zhang, Y. Sasaki and O. Ostrovski: Steel Res. Int., 2015, vol.86, pp. 670-77.

    CAS  Google Scholar 

  20. 20.

    20. D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan and G. Hoatson: Magn. Reson. Chem., 2002, vol.40, pp. 70-76.

    CAS  Google Scholar 

  21. 21.

    21. G. L. Caër and R. A. Brand: Journal of Physics: Condensed Matter, 1998, vol.10, pp. 10715-74.

    Google Scholar 

  22. 22.

    22. J. Yang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai and Y. Kashiwaya: Metall. Mater. Trans. B, 2017, vol.48, pp. 2077-91.

    Google Scholar 

  23. 23.

    23. J. Yang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai and Y. Kashiwaya: Metall. Mater. Trans. B, 2016, vol.47, pp. 2447-58.

    Google Scholar 

  24. 24.

    24. J. Yang, J. Zhang, Y. Sasaki, O. Ostrovski, C. Zhang, D. Cai and Y. Kashiwaya: ISIJ Int., 2016, vol.56, pp. 574-83.

    CAS  Google Scholar 

  25. 25.

    25. K. Gu, W. Wang, L. Zhou, F. Ma and D. Huang: Metall. Mater. Trans. B, 2012, vol.43, pp. 937-45.

    Google Scholar 

  26. 26.

    26. N. Ma, J. You, L. Lu, J. Wang, M. Wang and S. Wan: Inorganic Chemistry Frontiers, 2018, vol.5, pp. 1861-68.

    CAS  Google Scholar 

  27. 27.

    27. J. Yang, J. Zhang, O. Ostrovski, C. Zhang and D. Cai: Metall. Mater. Trans. B, 2019, vol.50, pp. 1766-72.

    Google Scholar 

  28. 28.

    28. J. H. Park, D. J. Min and H. S. Song: ISIJ Int., 2002, vol.42, pp. 38-43.

    CAS  Google Scholar 

  29. 29.

    29. P. McMillan and B. Piriou: J. Non-Cryst. Solids, 1983, vol.55, pp. 221-42.

    CAS  Google Scholar 

  30. 30.

    30. T. S. Kim and J. H. Park: ISIJ Int., 2014, vol.54, pp. 2031-38.

    CAS  Google Scholar 

  31. 31.

    31. E. Gao, W. Wang and L. Zhang: J. Non-Cryst. Solids, 2017, vol.473, pp. 79-86.

    CAS  Google Scholar 

  32. 32.

    32. J. Gao, G. Wen, T. Huang, B. Bai, P. Tang and Q. Liu: J. Am. Ceram. Soc., 2016, vol.99, pp. 3941-47.

    CAS  Google Scholar 

  33. 33.

    33. J. Gao, G. Wen, T. Huang, B. Bai, P. Tang and Q. Liu: J. Non-Cryst. Solids, 2016, vol.452, pp. 119-24.

    CAS  Google Scholar 

  34. 34.

    34. G.-H. Kim and I. Sohn: J. Non-Cryst. Solids, 2012, vol.358, pp. 1530-37.

    CAS  Google Scholar 

  35. 35.

    35. K. Zheng, Z. Zhang, L. Liu and X. Wang: Metall. Mater. Trans. B, 2014, vol.45, pp. 1389-97.

    Google Scholar 

  36. 36.

    36. J.-Y. Park, G. H. Kim, J. B. Kim, S. Park and I. Sohn: Metall. Mater. Trans. B, 2016, vol.47, pp. 2582-94.

    Google Scholar 

  37. 37.

    37. J. H. Park, D. J. Min and H. S. Song: ISIJ Int., 2002, vol.42, pp. 344-51.

    CAS  Google Scholar 

  38. 38.

    38. Y. Sun and Z. Zhang: Metall. Mater. Trans. B, 2015, vol.46, pp. 1549-54.

    Google Scholar 

  39. 39.

    39. R. K. Brow, D. R. Tallant and G. L. Turner: J. Am. Ceram. Soc., 1996, vol.79, pp. 2410-16.

    CAS  Google Scholar 

  40. 40.

    40. Y. Kim, Y. Yanaba and K. Morita: J. Am. Ceram. Soc., 2017, vol.100, pp. 5746-54.

    CAS  Google Scholar 

  41. 41.

    41. Y. Kim and K. Morita: ISIJ Int., 2014, vol.54, pp. 2077-83.

    CAS  Google Scholar 

  42. 42.

    42. E. I. Kamitsos, M. A. Karakassides and G. D. Chryssikos: J Phys. Chem., 1987, vol.91, pp. 1073-79.

    CAS  Google Scholar 

  43. 43.

    43. G. H. Kim and I. Sohn: Metall. Mater. Trans. B, 2014, vol.45, pp. 86-95.

    Google Scholar 

  44. 44.

    44. I. J. Hidi, G. Melinte, R. Stefan, M. Bindea and L. Baia: J. Raman. Spectrosc., 2013, vol.44, pp. 1187-94.

    CAS  Google Scholar 

  45. 45.

    45. G. Padmaja and P. Kistaiah: J. Phys. Chem. A, 2009, vol.113, pp. 2397-404.

    CAS  Google Scholar 

  46. 46.

    46. A. Stamboulis, R. G. Hill and R. V. Law: J. Non-Cryst. Solids, 2004, vol.333, pp. 101-07.

    CAS  Google Scholar 

  47. 47.

    47. D. R. Neuville, L. Cormier and D. Massiot: Chem. Geol., 2006, vol.229, pp. 173-85.

    CAS  Google Scholar 

  48. 48.

    J. F. Stebbins, S. Kroeker, S. KeunLee and T. J. Kiczenski: J. Non-Cryst. Solids, 2000, vol. 275, pp. 1-6.

    CAS  Google Scholar 

  49. 49.

    49. G.-r. Li, H.-m. Wang, Q.-x. Dai, Y.-t. Zhao and J.-s. Li: J. Iron Steel Res. Int., 2007, vol.14, pp. 25-28.

    CAS  Google Scholar 

  50. 50.

    50. Y. Lu, G. Zhang, M. Jiang, H. Liu and T. Li: Journal of Environmental Sciences, 2011, vol.23, pp. S167-S69.

    Google Scholar 

  51. 51.

    51. D. J. Min and F. Tsukihashi: Met. Mater. Int., 2017, vol.23, pp. 1-19.

    Google Scholar 

  52. 52.

    52. Z. Wang, Q. Shu and K. Chou: Steel Res. Int., 2013, vol.84, pp. 766-76.

    CAS  Google Scholar 

  53. 53.

    53. J. Wei, W. Wang, L. Zhou, D. Huang, H. Zhao and F. Ma: Metall. Mater. Trans. B, 2014, vol.45, pp. 643-52.

    Google Scholar 

  54. 54.

    54. Y. G. Maldonado, F. A. Acosta, A. H. Castillejos and B. G. Thomas: Iron Steel Tech., 2013, vol.10, pp. 65-75.

    CAS  Google Scholar 

  55. 55.

    55. L. Zhou, H. Li, W. Wang and J. Chang: Metall. Mater. Trans. B, 2018, vol.49, pp. 3019-29.

    Google Scholar 

  56. 56.

    R. J. O’Malley and J. Neal: Proc. METEC Congress, 1999, Vol. 99, pp. 13-15.

    Google Scholar 

  57. 57.

    57. L. Zhou, W. Wang, D. Huang, J. Wei and J. Li: Metall. Mater. Trans. B, 2012, vol.43, pp. 925-36.

    Google Scholar 

  58. 58.

    J. B. Ferguson and A. Buddington: Am. J. Sci., 1920, vol. 199, pp. 131-40.

    Google Scholar 

  59. 59.

    59. K. Xu, P. Loiseau, G. Aka and J. Lejay: Cryst. Growth Des., 2009, vol.9, pp. 2235-39.

    CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from Baosteel-Australia Joint Research and Development Centre (BAJC) (BA16006) and Australian Research Council (ARC) Industrial Transformation Hub (IH140100035) are greatly acknowledged. The authors also would like to acknowledge Dr Aditya Rawal of the NMR Facility within the Mark Wainwright Analytical Centre at the University of New South Wales for NMR support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 21 May, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, Q., Zhang, J. et al. Effect of Al2O3/(B2O3 + Na2O) Ratio on CaO-Al2O3-Based Mold Fluxes: Melting Property, Viscosity, Heat Transfer, and Structure. Metall Mater Trans B 50, 2794–2803 (2019). https://doi.org/10.1007/s11663-019-01711-z

Download citation