Cationic Effect of Ferrous Ions on Sulfide Capacity of CaO-FetO-Al2O3-SiO2 Slag System

Abstract

The cationic effect of ferrous ions on the sulfide capacity of CaO-FetO-Al2O3-SiO2 slags was studied from the viewpoint of the ionic structure in the slag using micro-Raman spectroscopy. In the cation-excess region (M2+/2(Fe3+ + Al3+) > 1.0), the sulfide capacity was directly proportional to the basicity of the slags, owing to the S2− stabilizing effect of excess cations. However, in the cation-deficient region (M2+/2(Fe3+ + Al3+) < 1.0), the sulfide capacity was independent of the basicity of the slags owing to the deficiency of cations required for charge compensation with Al3+ and Fe3+. The cation-substitution effect on the sulfide capacity of the CaO-rich slags (FetO/(FetO + CaO < 0.5) exhibited a linear relationship with the Fe2+ content because Fe2+ had a stronger affinity with S2− compared to that with Ca2+. However, in the FetO-rich slags (FetO/(FetO + CaO > 0.5), the sulfide capacity decreased with the increase of the Fe2+ content owing to the Qn unit affinity of the Fe2+ ion. The sulfide capacity was determined by the competition between the Qn unit affinity and stability of the S2− ion, depending on the type of cation. Therefore, the partial covalent bonding between the M2+ cations (M: Ca, Fe) and aluminosilicate affected the ionic interactions with the S2− ions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    B.O. Mysen, F. Seifert, and D. Virgo: Am. Mineral., 1980, vol. 65, pp. 867-884.

    CAS  Google Scholar 

  2. 2.

    L. Pargamin, C. Lupis, and P. Flinn: Metall. Trans. B, 1972, vol. 3, pp. 2093-2105.

    CAS  Google Scholar 

  3. 3.

    A. Kondratiev and E. Jak: Fuel, 2001, vol. 80, pp. 1989-2000.

    CAS  Google Scholar 

  4. 4.

    4. M. Hino, T. Nagasaka, A. Katsumata, K.-I. Higuchi, K. Yamaguchi, and N. Kon-No: Metall. Mater. Trans. B, 1999, vol. 30, pp. 671-683.

    CAS  Google Scholar 

  5. 5.

    S. Lee and D.J. Min: J. Am. Ceram. Soc., vol. 101, pp. 634-643 (2016)

    Google Scholar 

  6. 6.

    6. J.H. Park, H. Kim, and D.J. Min: Metall. Mater. Trans. B, 2008, vol. 39, pp. 150-153.

    CAS  Google Scholar 

  7. 7.

    7. D.B. Dingwell and D. Virgo: Geochim. Cosmochim. Acta., 1988, vol. 52, pp. 395-403.

    CAS  Google Scholar 

  8. 8.

    8. Y.J. Kim and D.J. Min: Steel Res. Int., 2012, vol. 83, pp. 852-860.

    CAS  Google Scholar 

  9. 9.

    9. Y. Park and D.J. Min: ISIJ Int., 2016, vol. 56, pp. 520-526.

    CAS  Google Scholar 

  10. 10.

    10. B. Hwang, J.-H. Shim, M.-G. Lee, J. Lee, J.-H. Jung, B.-S. Kim, and S.-B. Won: Korean. J. Met. Mater., 2016, vol. 54, pp. 862-874.

    CAS  Google Scholar 

  11. 11.

    J.M, Park, C.H, Keum, J.W. Son, and Y.K. Shin: Steelmaking Conference Proceedings, 1994, vol. 77, pp. 461–70.

  12. 12.

    12. S. Basu, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2008, vol. 39, pp. 447-456.

    CAS  Google Scholar 

  13. 13.

    13. S. Ban-Ya: ISIJ Int., 1993, vol. 33, pp. 2-11.

    Google Scholar 

  14. 14.

    14. P.L. Lin and A.D. Pelton: Metall. Trans. B, 1979, vol. 10, pp. 667-675.

    Google Scholar 

  15. 15.

    15. A. Paul and R. Douglas: Phys. Chem. Glasses, 1966, vol. 7, pp. 1-13.

    CAS  Google Scholar 

  16. 16.

    16. F. L. Harding: Glass Technol., 1972, vol. 13, pp. 43-49.

    CAS  Google Scholar 

  17. 17.

    17. B.O. Mysen, D. Virgo, C.M. Scarfe, and D. Cronin: Am. Mineral., 1985, vol. 70, pp. 487-498.

    CAS  Google Scholar 

  18. 18.

    18. S. Jahanshahi and S. Wright: ISIJ Int., 1993, vol. 33, pp. 195-203.

    CAS  Google Scholar 

  19. 19.

    19. L. Yang and G. Belton: Metall. Mater. Trans. B, 1998, vol. 29, pp. 837-845.

    CAS  Google Scholar 

  20. 20.

    20. J.M. Park: Steel Res. Int., 2002, vol. 73, pp. 39-43.

    CAS  Google Scholar 

  21. 21.

    21. L. Pauling: J. Am. Chem. Soc., 1929, vol. 51, pp. 1010-1026.

    CAS  Google Scholar 

  22. 22.

    22. M.J. Toplis and D.B. Dingwell: Geochim. Cosmochim. Acta., 2004, vol. 68, pp. 5169-5188

    CAS  Google Scholar 

  23. 23.

    23. B.O. Mysen, D. Virgo, and I. Kushiro: Am. Mineral., 1981, vol. 66, pp. 678-701.

    CAS  Google Scholar 

  24. 24.

    24. S.K. Lee and J.F. Stebbins: Am. Mineral., 1999, vol. 84, pp. 937-945.

    CAS  Google Scholar 

  25. 25.

    25. J.S. Choi, Y. Park, S. Lee, and D.J. Min: J. Am. Ceram. Soc., 2018, vol. 101, pp. 2856-2867.

    CAS  Google Scholar 

  26. 26.

    26. H.S. Park, S.S. Park, and I. Sohn: Metall. Mater. Trans. B, 2011, vol. 42, pp. 692-699.

    Google Scholar 

  27. 27.

    27. S. Lee and D.J. Min: Steel Res. Int., 2018, vol. 89, pp. 1800055.

    Google Scholar 

  28. 28.

    28. Y. Park and D.J. Min: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1709-1718.

    Google Scholar 

  29. 29.

    29. J.-H. Park and P.C.-H. Rhee: J. Non-Cryst. Solids., 2001, vol. 282, pp. 7-14.

    CAS  Google Scholar 

  30. 30.

    30. C.J.B. Fincham and F.D. Richardson: Proc. R. Soc., 1954, vol. 223, pp. 40-62.

    CAS  Google Scholar 

  31. 31.

    31. C. Wagner: Metall. Trans. B, 1975, vol. 6, pp. 405-409.

    Google Scholar 

  32. 32.

    32. R.A. Sharma and F.D. Richardson: Trans. Metall. Soc. AIME, 1965, vol. 233, pp. 1586-1592.

    CAS  Google Scholar 

  33. 33.

    33. J.D. Seo and S.H. Kim: Steel Res. Int., 1999, vol. 70, pp. 203-208.

    CAS  Google Scholar 

  34. 34.

    HC Oneill and J.A. Mavrogenes: J. Petrol., 2002, vol. 43, pp. 1049-1087.

    Google Scholar 

  35. 35.

    G.R.S. Pierre and J. Chipman: JOM, 1956, vol. 8, pp. 1474-1483.

    CAS  Google Scholar 

  36. 36.

    K.D. Kim, W.W. Huh, and D.J. Min: Metall. Mater. Trans. B, 2014, vol. 45, pp. 889-896.

    Google Scholar 

  37. 37.

    37. S. Ban-Ya, M. Hino, A. Sato, and O. Terayama: Tetsu-to-Hagané, 1991, vol. 77, pp. 361-368.

    CAS  Google Scholar 

  38. 38.

    38. C. Wang, Q. Lu, S. Zhang, and F. Li: J. Univ. Sci. Technol. Beijing, 2006, vol. 13, pp. 213-217.

    Google Scholar 

  39. 39.

    39. A. Bronson and G.R.S. Pierre: Metall. Trans. B., 1981, vol. 12, pp. 729-731.

    Google Scholar 

  40. 40.

    40. K.P. Abraham, M.W. Davies, and F.D. Richardson: J. Iron Steel Inst., 1960, vol. 195, pp. 58-64.

    Google Scholar 

  41. 41.

    41. M.M. Nzotta, D. Sichen, and S. Seetharaman: Metall. Mater. Trans. B, 1999, vol. 30, pp. 909-920.

    CAS  Google Scholar 

  42. 42.

    42. M.M. Nzotta, D. Sichen, and S. Seetharaman: ISIJ Int., 1999, vol. 39, pp. 657-663.

    CAS  Google Scholar 

  43. 43.

    43. J.H. Park and G.-H. Park: ISIJ Int., 2012, vol. 52, pp. 764-769.

    CAS  Google Scholar 

  44. 44.

    44. Y.B. Kang and J.H. Park: Metall. Mater. Trans. B, 2011, vol. 42, pp. 1211-1217.

    CAS  Google Scholar 

  45. 45.

    45. P.T. Carter and T. Macfarlane: J. Iron Steel Inst., 1957, vol. 185, pp. 54-66.

    Google Scholar 

  46. 46.

    46. S. Lee, E.J. Jung, J.H. Park and D.J. Min: J.Non-Cryst. Solids., 2015, vol. 429, pp. 54-60.

    CAS  Google Scholar 

  47. 47.

    47. J.H. Park: ISIJ Int., 2012, vol. 52, pp. 1627-1636.

    CAS  Google Scholar 

  48. 48.

    48. Y. Sasaki, M. Mohri, K. Suyama, and K. Ishii: ISIJ Int., 2000, vol. 40, pp. 1181-1187.

    CAS  Google Scholar 

  49. 49.

    49. A. D. Muro, N. Métrich, M. Mercier, D. Giordano, D. Massare, and G. Montagnac: Chem. Geol., 2009, vol. 259, pp. 78-88.

    Google Scholar 

  50. 50.

    D. De-Faria, S. Venâncio-Silva, and M. De-Oliveira: J. Raman Spectrosc., 1997, vol. 28, pp. 873-878.

    CAS  Google Scholar 

  51. 51.

    51. G.W. Toop and C.S. Samis: Trans. Metall. Soc. AIME, 1962, vol. 224, pp. 878-887.

    CAS  Google Scholar 

  52. 52.

    52. D.R. Neuville, L. Cormier, and D. Massiot: Geochim. Et. Cosmochim. Acta, 2004, vol. 68, pp. 5071-5079.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Trade, Industry and Energy under Project No. 10063488. It was also partially funded by Brain Korea 21. We would like to thank Editage (www.editage.co.kr) for English language editing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dong Joon Min.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 7, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, J.S., Min, D.J. Cationic Effect of Ferrous Ions on Sulfide Capacity of CaO-FetO-Al2O3-SiO2 Slag System. Metall Mater Trans B 50, 2758–2768 (2019). https://doi.org/10.1007/s11663-019-01699-6

Download citation