Highly Efficient Separation/Recycling Palladium(II) Ions from Aqueous Solutions by Silica Gel-Coated Graphene Oxide Modified with Mercapto Groups


The separation and recovery of precious metals from secondary resources is an extremely important and challenging task. Herein, a novel sorbent is successfully prepared by chemical grafting and utilized for the extraction and separation of Pd(II) ions from aqueous solutions. Various characterization techniques, including Fourier transform infrared spectroscopy, scanning electron microscopy, Brunauer–Emmett–Teller, X-ray photoelectron spectroscopy, and element analysis, are employed to study the structure, morphology, porous nature, and chemical composition of the as-prepared SiO2@GO-SH nanocomposites. The adsorption of Pd(II) ions on the SiO2@GO-SH can be described by the pseudo-second-order model and Langmuir isotherm model. The adsorption equilibrium has been attained within 90 min and the maximum adsorption capacity of 423.2 mg g−1 was attained at pH 3.5 and T = 308 K. The results reveal that SiO2@GO-SH exhibits an excellent adsorption performance towards Pd(II) ions. In addition, we have proposed the adsorption mechanism for Pd(II) ions on the SiO2@GO-SH surface. The adsorption of Pd(II) in SiO2@GO-SH is a chemisorption process, where partial adsorbed Pd(II) ions are reduced to Pd(0) by functional groups (-SH) in the SiO2@GO-SH. The results indicate that SiO2@GO-SH can serve as a promising sorbent for the efficient separation and recovery of palladium from the palladium-containing secondary resources.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    K. Yamamoto, J. Li, J.A.O. Garber, J.D. Rolfes, G.B. Boursalian, J.C. Borghs, C. Genicot, J. Jacq, M. van Gastel, F. Neese and T. Ritter, Nature., 2018, vol. 554, pp. 511.

    CAS  Google Scholar 

  2. 2.

    D. Fujita, Y. Ueda, S. Sato, N. Mizuno, T. Kumasaka and M. Fujita, Nature., 2016, vol. 540, pp. 563.

    CAS  Google Scholar 

  3. 3.

    Y. Taninouchi and T.H. Okabe, Metall. Mater. Trans. B., 2018, vol. 49, pp. 1781.

    Google Scholar 

  4. 4.

    Report on Critical raw materials for the EU-European Commission, 2014.

  5. 5.

    S. Sharma, A.S. KrishnaKumar and N. Rajesh, Rsc Adv, 2017, vol. 7, pp. 52133-142.

    CAS  Google Scholar 

  6. 6.

    D. Fontana, M. Pietrantonio, S. Pucciarmati, G.N. Torelli, C. Bonomi and F. Masi, J. Mater Cycles Waste, 2018, vol. 20, pp. 1199.

    CAS  Google Scholar 

  7. 7.

    S. Lin, J.K. Bediako, C. Cho, M. Song, Y. Zhao, J. Kim, J. Choi and Y. Yun, Chem. Eng. J., 2018, vol. 345, pp. 337 .

    CAS  Google Scholar 

  8. 8.

    S. Nagireddi, A.K. Golder and R. Uppaluri, J. Wat. Pro. Eng., 2017, vol. 19, pp. 8-17.

    Google Scholar 

  9. 9.

    L. Zhong, J. Zhang, Q. Zhang, M. Chen and Z. Huang, Rsc Adv, 2017, vol. 7, pp. 39244 .

    CAS  Google Scholar 

  10. 10.

    Y. Dai, Y. Liu and A. Zhang, J. Porous Mat., 2017, vol. 24, pp. 1037.

    CAS  Google Scholar 

  11. 11.

    Z. Peng, Z. Li, X. Lin, H. Tang, L. Ye, Y. Ma, M. Rao, Y. Zhang, G. Li and T. Jiang, Jom-US, 2017, vol. 69, pp. 1553.

    CAS  Google Scholar 

  12. 12.

    S. Sharma, C. Wu, R.T. Koodali and N. Rajesh, Rsc Adv, 2016, vol. 6, pp. 26668 .

    CAS  Google Scholar 

  13. 13.

    B. Zhang, S. Wang, L. Fu and L. Zhang, Polymers-basel, 2018, vol. 10, pp. 437 .

    Google Scholar 

  14. 14.

    İ. Duru, D. Ege and A.R. Kamali, J. Mater. Sci., 2016, vol. 51, pp. 6097 .

    CAS  Google Scholar 

  15. 15.

    Q. Ricoux, J.P. Méricq, D. Bouyer, V. Bocokić, L.C. Hernandez-Juarez, S. van Zutphen and C. Faur, Sep. Purif. Technol., 2017, vol. 174, pp. 159-165.

    CAS  Google Scholar 

  16. 16.

    B. Zhang, L. Fu, S. Wang and L. Zhang, Mater. Chem. Phys., 2018, vol. 214, pp. 533-539.

    CAS  Google Scholar 

  17. 17.

    G. Ge, X. Yuanlai, Y. Xinxin, W. Fen, Z. Fang, Y. Junxia and C. Ruan, Sci. Rep., 2017, vol. 7, 11290.

    Google Scholar 

  18. 18.

    M. Li, M. Li, C. Feng and Q. Zeng, Appl. Surf. Sci., 2014, vol. 314, pp. 1063-69.

    CAS  Google Scholar 

  19. 19.

    M. Li, X. Meng, X. Liang, J. Yuan, X. Hu, Z. Wu and X. Yuan, Hydrometallurgy, 2018, vol. 176, pp. 243 .

    CAS  Google Scholar 

  20. 20.

    S. Sivrikaya, H. Altundag, M. Zengin and M. Imamoglu, Sep. Sci. Technol., 2011, vol. 46, pp. 2032-2040.

    CAS  Google Scholar 

  21. 21.

    A.I.A. Sherlala, A.A.A. Raman, M.M. Bello and A. Asghar, Chemosphere, 2018, vol. 193, pp. 1004 .

    CAS  Google Scholar 

  22. 22.

    W. Peng, H. Li, Y. Liu and S. Song, J. Mol. Liq., 2017, vol. 230, pp. 496.

    CAS  Google Scholar 

  23. 23.

    S. Dey, S. Podder, A. Roychowdhury, D. Das and C.K. Ghosh (2018) J. Environ. Manag. 211, pp. 356-66.

    CAS  Google Scholar 

  24. 24.

    S. Koushkbaghi, A. Zakialamdari, M. Pishnamazi, H.F. Ramandi, M. Aliabadi and M. Irani, Chem. Eng. J., 2018, vol. 337, pp. 169.

    CAS  Google Scholar 

  25. 25.

    L. Yu, Q. Zhang, B. Yang, Q. Xu, Q. Xu and X. Hu, Sensor Actuat B-Chem, 2018, vol. 259, pp. 540.

    CAS  Google Scholar 

  26. 26.

    Q. Liu, J. Shi, J. Sun, T. Wang, L. Zeng and G. Jiang, Angew. Chem. Int. Edit, 2011, vol. 50, pp. 5913.

    CAS  Google Scholar 

  27. 27.

    D. Zhao, X. Gao, C. Wu, R. Xie, S. Feng and C. Chen, Appl. Surf. Sci., 2016, vol. 384, pp. 1.

    CAS  Google Scholar 

  28. 28.

    D. Zhao, Q. Zhang, H. Xuan, Y. Chen, K. Zhang, S. Feng, A. Alsaedi, T. Hayat and C. Chen, J. Colloid interf. Sci., 2017, vol. 506, pp. 300.

    CAS  Google Scholar 

  29. 29.

    H. Hosseinzadeh, S. Ramin, Int. J. Biol. Macromol., 2018, vol. 113, pp. 859.

    CAS  Google Scholar 

  30. 30.

    L. Cui, Y. Wang, L. Gao, L. Hu, L. Yan, Q. Wei and B. Du, Chem. Eng. J., 2015, vol. 281, pp. 1.

    CAS  Google Scholar 

  31. 31.

    C. He, Z. Yang, J. Ding, Y. Chen, X. Tong and Y. Li, Colloid Surface A, 2017, vol. 520, pp. 448.

    CAS  Google Scholar 

  32. 32.

    H.H. El-Maghrabi, S.M. Abdelmaged, A.A. Nada, F. Zahran, S.A. El-Wahab, D. Yahea, G.M. Hussein and M.S. Atrees, J. Hazard. Mater., 2017, vol. 322, pp. 370.

    CAS  Google Scholar 

  33. 33.

    S. Motahari, B.S. Heidari and G.H. Motlagh, J. Appl. Polym. Sci., 2015, vol. 132, 1. https://doi.org/10.1002/app.42543.

    Article  Google Scholar 

  34. 34.

    A.R. Keshtkar, M. Irani and M.A. Moosavian, J. Taiwan. Inst. Chem. E., 2013, vol. 44, pp. 279.

    CAS  Google Scholar 

  35. 35.

    D. Perez-Quintanilla, I. Del Hierro, M. Fajardo and I. Sierra, Micropor. Mesopor. Mat., 2006, vol. 89, pp. 58.

    CAS  Google Scholar 

  36. 36.

    M. Li, C. Feng, M. Li, Q. Zeng, Q. Gan and H. Yang, Appl. Surf. Sci., 2015, vol. 332, pp. 463.

    CAS  Google Scholar 

  37. 37.

    T. Jiang, M. Dong, L. Yan, M. Fang and R. Liu, J. Nanosci. Nanotechno., 2018, vol. 18, pp. 4692.

    CAS  Google Scholar 

  38. 38.

    Z. Wang, P. Yin, R. Qu, H. Chen, C. Wang and S. Ren, Food Chem., 2013, vol. 136, pp. 1508.

    CAS  Google Scholar 

  39. 39.

    M. Li, C. Feng, M. Li, Q. Zeng and Q. Gan, Hydrometallurgy, 2015, vol. 154, pp. 63.

    CAS  Google Scholar 

  40. 40.

    M.B. Luo, Y.Y. Xiong, H.Q. Wu, X.F. Feng, J.Q. Li and F. Luo, T, Angew. Chem. Int. Edit, 2017, vol. 129, pp. 16594.

    Google Scholar 

  41. 41.

    J. Cao, G. Xu, Y. Xie, M. Tao and W. Zhang, Rsc Adv, 2016, vol. 6, pp. 58088.

    CAS  Google Scholar 

  42. 42.

    X. Liang, J. Han, Y. Xu, L. Wang, Y. Sun and X. Tan, Appl. Surf. Sci., 2014, vol. 322, pp. 194.

    CAS  Google Scholar 

  43. 43.

    N.H. Khdary, A.E.H. Gassim, A.G. Howard, T.S. Sakthivel and S. Seal, Anal Methods-UK, 2018, vol. 1, pp. 245.

    Google Scholar 

  44. 44.

    F. Porcaro, L. Carlini, A. Ugolini, D. Visaggio, P. Visca, I. Fratoddi, I. Venditti, C. Meneghini, L. Simonelli, C. Marini, W. Olszewski, N. Ramanan, I. Luisetto and C. Battocchio, Materials, 2016, vol. 9, pp. 1028.

    Google Scholar 

  45. 45.

    M. Wojnicki, R.P. Socha, Z. Pędzich, K. Mech, T. Tokarski and K. Fitzner, J. Chem. Eng. Data, 2018, vol. 63, pp. 702.

    CAS  Google Scholar 

  46. 46.

    S. Lin, W. Wei, X. Wu, T. Zhou, J. Mao and Y. Yun, J. Hazard. Mater., 2015, vol. 299, pp. 10 .

    CAS  Google Scholar 

  47. 47.

    S. Sharma and N. Rajesh, Chem. Eng. J., 2016, vol. 283, pp. 999 .

    CAS  Google Scholar 

  48. 48.

    S.W. Won, J. Park, J. Mao and Y. Yun, Bioresource Technol., 2011, vol. 102, pp. 3888 .

    CAS  Google Scholar 

  49. 49.

    T. Kimuro, M.R. Gandhi, U.M.R. Kunda, F. Hamada and M. Yamada, Hydrometallurgy, 2017, vol. 171, pp. 254 .

    CAS  Google Scholar 

Download references


This research is supported by the National Natural Science Foundation of China (No. 51708075) and the Natural Science Foundation of Chongqing, China (No. cstc2019jcyj-msxmX0401). Also, the authors acknowledge the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant Nos. KJ1713335, KJQN201801527). This project is supported by open foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University (Grant No. 2019GXYSOF14)

Author information



Corresponding authors

Correspondence to Min Li or Songshan Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 4, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, M., Tang, S., Feng, J. et al. Highly Efficient Separation/Recycling Palladium(II) Ions from Aqueous Solutions by Silica Gel-Coated Graphene Oxide Modified with Mercapto Groups. Metall Mater Trans B 50, 2747–2757 (2019). https://doi.org/10.1007/s11663-019-01697-8

Download citation