Study of Cu-Ni-Fe Alloys as Inert Anodes for Al Production in Low-Temperature KF-AlF3 Electrolyte


Cu-Ni-Fe-based alloys are considered as promising O2-evolving anode materials for CO2-free Al production. In the present study, biphased (as-cast) and monophased (postcasting homogenized) Cu65Ni20Fe15, alloys, and monophased Ni65Fe25Cu10 alloy (in wt pct) are evaluated as O2-evolving anodes for Al production in potassium cryolite at 700 °C. The produced Al purity is 99.6 wt pct, and the erosion rate is estimated at 0.4 cm year−1 for both Cu65Ni20Fe15 anodes compared to 95.2 wt pct and 3.2 cm year−1 for the Ni65Fe25Cu10 anode. The compositions, and morphologies of the surface oxide layer and the metal fluoride layer present at the oxide/alloy interface are compared for the three anodes. The deleterious impact of electrolyte infiltration on the surface oxide building is highlighted.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    International Aluminium Institute (IAI): Statistics on primary aluminium production. Accessed 19 Feb 2019.

  2. 2.

    International Energy Agency (IEA): Energy technology transitions for industry: strategies for the next industrial revolution. Accessed 19 Feb 2019.

  3. 3.

    D. Paraskevas, K. Kellens, A. Van de Voorde, W. Dewulf and J.R. Duflou: Procedia CIRP, 2016, vol. 40, pp. 209–13.

    Article  Google Scholar 

  4. 4.

    J. Keniry: JOM, 2001, vol. 53, pp. 43–47.

    CAS  Article  Google Scholar 

  5. 5.

    I. Galasiu, R. Galasiu and J. Thonstad, Inert Anodes for Aluminium Electrolysis, 1st ed., Aluminium-Verlag, Düsseldorf, 2007, pp. 10-11.

    Google Scholar 

  6. 6.

    R.P. Pawlek: Light Met., 2014, pp. 1309–13.

  7. 7.

    V.A. Kovrov, A.P. Khramov, A.A. Redkin and Y.P. Zaikoz: ECS Trans., 2009, vol. 16 (39), pp. 7–17.

    CAS  Article  Google Scholar 

  8. 8.

    J. Yang, D.G. Graczyk, C. Wunsch and J.N. Hryn: Light Met., 2007, pp. 537–41.

  9. 9.

    L. Cassayre, P. Palau, P. Chamelot and L. Massot: J. Chem. Eng. Data, 2010, vol. 55, pp. 4549–60.

    CAS  Article  Google Scholar 

  10. 10.

    S.K. Padamata, A. S. Yasinskiy and P. V. Polyakov: J. Sib. Fed. Univ. Chem., 2018, vol. 1, pp. 18-30.

    Google Scholar 

  11. 11.

    P. Meyer, M. Gibilaro, L. Massot, I. Pasquet, P. Tailhades, S. Bouvet, and P. Chamelot: Mat. Sci. Eng. B, 2018, vol. 228, pp. 117–22.

    CAS  Article  Google Scholar 

  12. 12.

    T.R. Beck: Light Met.. 1995, pp 355–60.

  13. 13.

    V. De Nora and T. Nguyen: CA patent 2 567 127, 2012.

  14. 14.

    C. Barthelemy, S. Bouvet, A. Gabriel, V. Laurent, and A. Marmottant: CA patent application 2 952 263.

  15. 15.

    C. Barthelemy, A. Marmottant, V. Laurent S. Bouvet, and V. Stabrowski: CA patent application 2 980 248.

  16. 16.

    X. Cheng, L. Fan, H. Yin, L. Liu, K. Du and D. Wang: Corr. Sci., 2016, vol. 112, pp. 54-62.

    CAS  Article  Google Scholar 

  17. 17.

    X. Cheng, H. Yin and D. Wang: Corr. Sci., 2018, vol. 141, pp. 168-174.

    CAS  Article  Google Scholar 

  18. 18.

    D. Tang, K. Zheng, H. Yin, X. Mao, D.R. Sadoway and D. Wang: Electrochim. Acta, 2018, vol. 279, pp. 250-257.

    CAS  Article  Google Scholar 

  19. 19.

    S. Helle, M. Pedron, B. Assouli, B. Davis, D. Guay, and L. Roué: Corr. Sci., 2010, vol. 52, pp. 3348–55.

    CAS  Article  Google Scholar 

  20. 20.

    S. Helle, B. Brodu, B. Davis, D. Guay and L. Roué: Corr. Sci., 2011, vol. 53, pp. 3248–53.

    CAS  Article  Google Scholar 

  21. 21.

    E. Gavrilova, G. Goupil, B. Davis, D. Guay and L. Roué: Corr. Sci., 2015, vol. 101, pp. 105–13.

    CAS  Article  Google Scholar 

  22. 22.

    K.P. Gupta, S.B. Rajendraprasad and A.K. Jena: J. Alloy Phase Diagrams, 1987, vol. 3, pp. 116–27.

    CAS  Google Scholar 

  23. 23.

    C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma and K. Ishida: J. Phase Equilib. Diffus., 2004, vol. 25, pp. 320–28.

    Article  Google Scholar 

  24. 24.

    T.R. Beck, C.M. MacRae and N.C. Wilson: Metall. Mat. Trans. B, 2011, vol. 42, pp. 807–13.

    CAS  Article  Google Scholar 

  25. 25.

    I. Gallino, M.E. Kassner and R.Busch: Corr. Sci., 2012, vol. 63, pp. 293–03.

    CAS  Article  Google Scholar 

  26. 26.

    I. Gallino, S. Curiotto, M. Baricco, M.E. Kassner and R. Busch: J. Phase Equilib. Diffus., 2008, vol. 29, pp. 131–35.

    CAS  Article  Google Scholar 

  27. 27.

    S. Jucken, E. Schaal, B. Tougas, B. Davis, D. Guay and L. Roué: Corr. Sci., 2019, vol. 147, pp. 321–29.

    CAS  Article  Google Scholar 

  28. 28.

    I. Gallino: PhD thesis, Oregon State University, USA, 2003.

  29. 29.

    A.D. LeClaire: Diffusion in Solid Metals and Alloys, vol. 26, H. Mehrer, Landolt-Börnstein, eds., Springer, Berlin, 1990, pp. 473–85.

  30. 30.

    T. Jentoftsen, O.-A. Lorentsen, E. Dewing, G. Haarberg, and J. Thonstad: Metall. Mater. Trans. B, 2002, vol. 33, pp. 901–08.

    Article  Google Scholar 

  31. 31.

    O.-A. Lorentsen: PhD thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2000.

  32. 32.

    T.T. Nguyen: US patent 8 366 891, 2013.

  33. 33.

    A.P. Khramov, V.A. Kovrov, Y.P. Zaikov and V.M. Chumarev: Cor. Sci., 2013, vol. 70, pp. 194–202.

    CAS  Article  Google Scholar 

  34. 34.

    G. Goupil, E. Gavrilova, B. Davis, D. Guay, and L. Roué: Light Met., 2014, pp. 1305–07.

Download references


The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant STPGP 494283-16), Prima Québec (Grant R13-13-001), Metal7, and Kingston Process Metallurgy for supporting this work.

Author information



Corresponding author

Correspondence to Lionel Roué.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 27 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jucken, S., Tougas, B., Davis, B. et al. Study of Cu-Ni-Fe Alloys as Inert Anodes for Al Production in Low-Temperature KF-AlF3 Electrolyte. Metall Mater Trans B 50, 3103–3111 (2019).

Download citation