Agglomeration Mechanism of Complex Ti-Al Oxides in Liquid Ferrous Alloys Considering High-Temperature Interfacial Phenomenon

Abstract

This work presents the agglomeration mechanism of complex Ti-Al oxides in the liquid ferrous alloy. Cluster characteristics were investigated using Al and Ti/Al-complex deoxidation method in lab scale. The time-dependent size distribution, total number per volume, average size, and circularity of the clusters were quantitatively analyzed. Furthermore, high-temperature confocal laser scanning microscopy was utilized to directly observe the cluster formation of Ti-Al oxides. A capillary force model including wettability parameters was applied to compare the agglomeration capabilities of different types of non-metallic inclusions. When a low Ti is added into melt, the agglomeration of TiOx·FeO liquid inclusions is one of the key factors to decrease the frequency of cluster formation. When the Al is added into melt, the heterogeneous precipitation on TiOx·FeO surfaces is the main reaction process. Ti-Al oxides have lower agglomeration ability than that of Al2O3, which in turn, contribute to a low agglomeration frequency as well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    A. Rahmel and P. J. Spencer: Oxid. Metals, 1991, vol. 35, pp. 53-68.

    CAS  Google Scholar 

  2. 2.

    K. L. Luthra: Oxid. Metals, 1991, vol. 36, pp. 475-490.

    CAS  Google Scholar 

  3. 3.

    B. J. Lee and N. Saunders: Zeitschrift für Metallkunde, 1997, vol. 88, pp. 152-161.

    CAS  Google Scholar 

  4. 4.

    S. Das: J. Ph. Eq., 2002, vol. 23, pp. 525-536.

    CAS  Google Scholar 

  5. 5.

    H. J. Seifert, A. Kussmaul and F. Aldinger: J. Alloy Compounds, 2001, vol. 317, pp. 19-25.

    Google Scholar 

  6. 6.

    M. J. Mas-Guindal, E. Benko and M. A. Rodriguez: J. Alloy Compounds, 2008, vol. 454, pp. 352-358.

    CAS  Google Scholar 

  7. 7.

    I. Bellemans, E. D. Wilde, N Moelans and K. Verbeken: Ad. Colloid Interface Sci., 2018, vol. 255, pp. 47-63.

    CAS  Google Scholar 

  8. 8.

    A. P. Weber and S. K. Friedlander: J. Aerosol Sc., 1997, vol. 28, pp. 179-192.

    CAS  Google Scholar 

  9. 9.

    T. G. Anjali and M. G. Basavaraj: J. Colloid Interface Sci., 2016, vol. 478, pp. 63-71.

    CAS  Google Scholar 

  10. 10.

    N. Sinn, M. Alishahi and S. Hardt: J. Colloid Interface Sci., 2015, vol. 458, pp. 62-68.

    CAS  Google Scholar 

  11. 11.

    C. J. Xuan, A. V. Karasev, P. G. Jönsson and K. Nakajima: Steel Res. Int., 2017, vol. 88, 1600090.

    Google Scholar 

  12. 12.

    W. Mu, N. Dogan and K. S. Coley: J. Mater Sci., 2018, vol. 53, pp. 13203-13215.

    CAS  Google Scholar 

  13. 13.

    W. Mu, P. G. Jönsson, and K. Nakajima: High Temp. Mater. Processes, 2017, vol. 36, pp. 309-325.

    CAS  Google Scholar 

  14. 14.

    W. Mu, P. G. Jönsson, and K. Nakajima: ISIJ Int., 2014, 54, pp. 2907-2916.

    CAS  Google Scholar 

  15. 15.

    E. Dickinson and L. Eriksson: Adv. Coll. Interface Sci., 1991, vol. 34, pp. 1-29.

    CAS  Google Scholar 

  16. 16.

    W. Mu, N. Dogan and K. S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2379-2388.

    Google Scholar 

  17. 17.

    W. Mu, N. Dogan and K. S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2092-2103.

    Google Scholar 

  18. 18.

    W. Mu, N. Dogan and K. S. Coley: JOM, 2018, vol. 70, pp. 1199-1209.

    CAS  Google Scholar 

  19. 19.

    C. Xuan, A. V. Karasev and P. G. Jönsson: ISIJ Int., 2016, vol. 56, pp. 1204-1209.

    CAS  Google Scholar 

  20. 20.

    G. Kaptay: Ad. Colloid Interface Sci., 2018, vol. 256, pp. 163-192.

    CAS  Google Scholar 

  21. 21.

    G. Kaptay: J. Mater. Sci., 2005, vol. 40, pp. 2125-2131.

    CAS  Google Scholar 

  22. 22.

    O. Wijk: Inclusion Engineering. Proc. 7th Int. Conf. Refining Process (SCANINJECT VII), Luleå, Sweden, 1995, pp. 35–67.

  23. 23.

    L. Holappa and O. Wijk: Inclusion Engineering. Treatise on Process Metallurgy: Industrial Processes, 2014, pp. 347-372.

    Google Scholar 

  24. 24.

    W. Mu, P. G. Jönsson and K. Nakajima: J. Mater. Sci., 2016, vol. 51, pp. 2168-2180.

    CAS  Google Scholar 

  25. 25.

    K. J. Malmberg, H. Shibata, S. Y. Kitamura, P. G. Jönsson, S. Nabeshima and Y. Kishimoto: J. Mater. Sci., 2010, vol. 45, pp. 2157-2164.

    CAS  Google Scholar 

  26. 26.

    J. Janis, K. Nakajima, A. Karasev, H. Shibata and P. G. Jönsson: J. Mater. Sci., 2010, vol. 45, pp. 2233-2238.

    CAS  Google Scholar 

  27. 27.

    D. Zhang, Y. Shintaku, S. Suzuki and Y. I. Komizo: J. Mater. Sci., 2012, vol. 47, pp. 5524-5528.

    CAS  Google Scholar 

  28. 28.

    X. L. Wan, R. Wei, L. Cheng, M. Enomoto and Y. Adachi: J. Mater. Sci., 2013, vol. 48, pp. 4345-4355.

    CAS  Google Scholar 

  29. 29.

    W. Mu, H. Shibata, P. Hedström, P. G. Jönsson and K. Nakajima: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2133-2147.

    Google Scholar 

  30. 30.

    C. Xuan, M. Mu, Z. I. Olano, P. G. Jönsson and K. Nakajima: Steel Res. Int., 2016, vol. 87, pp. 911-920.

    CAS  Google Scholar 

  31. 31.

    W. Mu, H. Shibata, P. Hedström, P. G. Jönsson and K. Nakajima: Steel Res. Int., 2016, vol. 87, pp. 10-14.

    CAS  Google Scholar 

  32. 32.

    H. Matsuura, C. Wang, G. Wen and S. Sridhar: ISIJ Int., 2007, vol. 47, pp. 1265-1274.

    CAS  Google Scholar 

  33. 33.

    C. Wang, N. T. Nuhfer and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40, pp. 1005-1021.

    CAS  Google Scholar 

  34. 34.

    C. Wang, N. T. Nuhfer and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40, pp. 1022-1034.

    CAS  Google Scholar 

  35. 35.

    C. Wang, N. T. Nuhfer and S. Sridhar: Metall. Mater. Trans. B, 2010, vol. 41, pp. 1084-1094.

    CAS  Google Scholar 

  36. 36.

    M. Li, H. Matsuura and F. Tsukihashi: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1915-1923.

    Google Scholar 

  37. 37.

    M. Li, H. Matsuura and F. Tsukihashi: Metall. Mater. Trans. A, 2018. https://doi.org/10.1007/s11661-018-5015-3.

    Google Scholar 

  38. 38.

    M. Li, H. Matsuura and F. Tsukihashi: Mater. Characterization, 2018, vol. 136, pp. 358-366.

    CAS  Google Scholar 

  39. 39.

    M. K. Sun, I. H. Jung and H. G. Lee: Met. Mater. Int., 2008, vol. 14, pp. 791-798.

    CAS  Google Scholar 

  40. 40.

    I. H. Jung, S. A. Decterov and A. D. Pelton: ISIJ Int., 2004, vol. 44, pp. 527-536.

    CAS  Google Scholar 

  41. 41.

    S. A. Decterov, I. -H. Jung, E. Jak. Y.-B. Kang, P. Hayes and A. D. Pelton: Proc. 7th Int. Conf. Molten Slags, Fluxes and Salts, Café Town, South Africa, 2004, pp. 839-850.

  42. 42.

    F. Ruby-Meyer, J. Lehmann and H. Gaye: Scand. J. Metall., 2000, vol. 29, pp. 206-212.

    CAS  Google Scholar 

  43. 43.

    W. Choi, H. Matsuura and F. Tsukihashi: ISIJ Int., 2011, vol. 51, pp. 1951-1956.

    CAS  Google Scholar 

  44. 44.

    T. Nakaoka, S. Taniguchi, K. Matsumoto and S. T. Johansen: ISIJ Int., 2001, vol. 41, pp. 1103-1111.

    CAS  Google Scholar 

  45. 45.

    H. Lei, L. Wang, Z. Wu and J. Fan: ISIJ Int., 2002, vol. 42, pp. 717-725.

    CAS  Google Scholar 

  46. 46.

    H. Lei, K. Nakajima and J.-C. He: ISIJ Int., 2010, vol. 50, pp. 1735-1745.

    CAS  Google Scholar 

  47. 47.

    H. Arai, K. Matsumoto, S. Shimasaki and S. Taniguchi: ISIJ Int., 2009, vol. 49, pp. 965-974.

    CAS  Google Scholar 

  48. 48.

    R. Hamzaoui, O. Elkedim, N. Fenineche, E. Gaffet and J. Craven: Mater. Sci. Eng. A, 2003, vol. 360, pp. 299-305.

    Google Scholar 

  49. 49.

    R. Hamzaoui, O. Elkedim and E. Gaffet: Mater Sci Eng A, 2004, vol. 381, pp. 363-371.

    Google Scholar 

  50. 50.

    R. Hamzaoui and O. Elkedim: J. Alloys Comp., 2013, vol. 573, pp. 157-162.

    CAS  Google Scholar 

  51. 51.

    J. F. Li, W. Q. Jie, G. C. Yang and Y. H. Zhou: Acta Mater., 2002, vol. 50, pp. 1797-1807.

    CAS  Google Scholar 

  52. 52.

    T. Zeng: J. Alloys Compd. 2019. https://doi.org/10.1016/j.jallcom.2017.08.285.

  53. 53.

    N. Nakada: Mater. Let., 2017, vol. 187, pp. 166-169.

    CAS  Google Scholar 

  54. 54.

    L. Zhao, N. Park, Y. Tian, A. Shibata, and N. Tsuji: Adv. Eng. Mater., vol. 19, 2017. https://doi.org/10.1002/adem.201600778

    Google Scholar 

  55. 55.

    A. V. Karasev and H. Suito: ISIJ Int., 2008, vol. 48, pp. 1507-1516.

    CAS  Google Scholar 

  56. 56.

    J.-O. Andersson, T. Helander, L. Hoglund, P. Shi, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273-312.

    CAS  Google Scholar 

  57. 57.

    TCFE9: TCS Steels/Fe-Alloys Database Version 9.0, Thermo-Calc Software AB, Sweden, 2017.

  58. 58.

    A. V. Karasev and H. Suito: ISIJ Int., 2009, vol. 49, pp. 229-238.

    CAS  Google Scholar 

  59. 59.

    H. Suito, A. V. Karasev, M. Hamada, R. Inoue and K. Nakajima: ISIJ Int., 2011, vol. 51, pp. 1151-1162.

    CAS  Google Scholar 

  60. 60.

    C. Xuan, H. Shibata, S. Sukenaga, P. G. Jönsson and K. Nakajima: ISIJ Int., 2015, vol. 55, pp. 1882-1890.

    CAS  Google Scholar 

  61. 61.

    K. Ogino, K. Nogi and Y. Koshida: Tetsu-to-Hagané, 1973, vol. 59, pp. 1380-1387.

    CAS  Google Scholar 

  62. 62.

    J. M. Humenik and W. D. Kingery: J. Am. Cera. Soc., 1954, vol. 37, pp. 18-23.

    CAS  Google Scholar 

  63. 63.

    P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov and K. Nagayama: J. Colloid Interface Sci., 1993, vol. 155, pp. 420-437.

    CAS  Google Scholar 

  64. 64.

    V. N. Paunov, P. A. Kralchevsky, N. D. Denkov and K. Nagayama: J. Colloid Interface Sci., 1993, vol. 157, pp. 100-112.

    CAS  Google Scholar 

  65. 65.

    C. J. Xuan and W. Mu: J. Mater. Sci. 2019. https://doi.org/10.1007/s10853-019-03458-z.

    CAS  Google Scholar 

Download references

Acknowledgment

CX would like to acknowledge Docent Andrey Karasev and Professor Pär Jönsson at KTH Royal Institute of Technology for the assistance of sample preparation. WM would like to acknowledge the financial support from The Swedish Foundation for International Cooperation in Research and Higher Education (STINT).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Changji Xuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 12, 2019.

Appendix

Appendix

See Figure A1.

Fig. A1
figure13

SEM-EDS element mapping images of Al2O3 and TiAlOx in one agglomerated cluster

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mu, W., Xuan, C. Agglomeration Mechanism of Complex Ti-Al Oxides in Liquid Ferrous Alloys Considering High-Temperature Interfacial Phenomenon. Metall Mater Trans B 50, 2694–2705 (2019). https://doi.org/10.1007/s11663-019-01686-x

Download citation