Effects of Remelting Current on Structure, Composition, Microsegregation, and Inclusions in Inconel 718 Electroslag Remelting Ingots


The macro- and microstructures, chemical compositions, microsegregations, and nonmetallic inclusion characteristics at different positions of the as-cast IN718 ingots produced by a laboratory-scale electroslag remelting (ESR) furnace under four remelting currents (150, 200, 250, and 300 A) were compared and investigated comprehensively. The results indicate that the average melting rate increases with the increasing remelting current, and the molten pool tends to be deeper. Thus, at the same position of the ESR ingots, the volume fraction of the segregated phase, the degree of elemental segregation, and the secondary dendrite arm spacing have the same tendency to increase with the increasing remelting current and show an increasing trend from the bottom to the top along the height of each ingot. If the current is set relatively low, the oxygen and nitrogen levels in the ingots increase, the conditions that make the contents and distributions of Al and Ti become unstable. In addition, the major nonmetallic inclusions in the IN718 ESR ingots are MgO·Al2O3 complex oxide inclusions with a three-layer structure and (Nb,Ti)N nitrides. The volume fractions and mean equivalent diameters display a downward trend with the increasing remelting current. The size and quantity of these inclusions are always larger in the upper portions of the ingots than those in the lower portions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    A. Choudhury: ISIJ Int., 1992, vol. 32, pp. 563–74.

    Article  CAS  Google Scholar 

  2. 2.

    J.M. Moyer, L.A. Jackman, C.B. Adasczik, R.M. Davis, and R. Forbes-Jones: Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, PA, 1994.

    Google Scholar 

  3. 3.

    Z.Z. Wang, D.H. Hua, X. Jin, and G.S. Chen: J. Iron Steel Res., 2003, vol. 15, pp. 338–43.

    Google Scholar 

  4. 4.

    K.O. Yu and J. Domingue: Superalloy 718: Metallurgy and Applications, TMS, Pittsburgh, PA, 1989.

    Google Scholar 

  5. 5.

    J.G. Yang and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1–10.

    Google Scholar 

  6. 6.

    D.K. Melgaard, R.L. Williamson, and J.J. Beaman: JOM, 1998, vol. 50, pp. 13–17.

    Article  CAS  Google Scholar 

  7. 7.

    X. Wang, R.M. Ward, M.H. Jacobs, and M.D. Barratt: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2981–89.

    Article  CAS  Google Scholar 

  8. 8.

    S.M. Jung: ISIJ Int., 2001, vol. 41, pp. 1447–53.

    Article  CAS  Google Scholar 

  9. 9.

    Z.H. Jiang, D. Hou, Y.W. Dong, Y.L. Cao, H.B. Cao, and W. Gong: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1465–74.

    Article  CAS  Google Scholar 

  10. 10.

    J.G. Yang, and J.H. Park: Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts, TMS, Nashville, TN, 2016.

  11. 11.

    G. Pateisky, H. Biele, and H.J. Fleischer: J. Vac. Sci. Tech., 1972, vol. 9, pp. 1318–21.

    Article  CAS  Google Scholar 

  12. 12.

    Q. Wang, H. Cai, L.P. Pan, Z. He, S. Liu, and B.K. Li: JOM, 2016, vol. 68, pp. 3143–49.

    Article  CAS  Google Scholar 

  13. 13.

    V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 271–80.

    Article  CAS  Google Scholar 

  14. 14.

    B. Hernandezmorales and A. Mitchell: Ironmak. Steelmak., 1999, vol. 26, pp. 423–38.

    Article  CAS  Google Scholar 

  15. 15.

    Q. Liang, X.C. Chen, H. Ren, F. Wang, and H.J. Guo, J. Aeronaut Mater., 2012, vol. 32, pp. 29–34.

    CAS  Google Scholar 

  16. 16.

    X.C. Chen, H. Ren, R. Fu, D. Feng: Spec. Steel Tech., 2011, vol. 17, pp. 1–4.

    Google Scholar 

  17. 17.

    T. Antonsson and H. Fredriksson: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 85–96.

    Article  CAS  Google Scholar 

  18. 18.

    M. Wang, X.D. Zha, M. Gao, Y.C. Ma, K. Liu, and Y.Y. Li: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5217–31.

    Article  CAS  Google Scholar 

  19. 19.

    Z.B. Li: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, 2011.

    Google Scholar 

  20. 20.

    A. Kharicha, A. Ludwig, and M. Wu: Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 129–34.

    Article  CAS  Google Scholar 

  21. 21.

    J.G Yang, J.H Park (2017) Metall. Mater. Trans. B, 48B:2147–56.

    Article  CAS  Google Scholar 

  22. 22.

    C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, and H. Ren: Steel Res. Int., 2012, vol. 83, pp. 472–86.

    Article  CAS  Google Scholar 

  23. 23.

    F. R. Carmona and A. Mitchell: ISIJ Int., 1992, vol. 32, pp. 529–37.

    Article  Google Scholar 

  24. 24.

    J.N. DuPont, C.V. Robino, J.R. Michael, M.R. Notis, and A.R. Marder: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2785–96.

    Article  CAS  Google Scholar 

  25. 25.

    G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, Jr., and W.F. Hammetter: Metall. Trans. A, 1989, vol. 20A, pp. 2149–58.

    Article  CAS  Google Scholar 

  26. 26.

    N.B. Dahotre, M.H. McCay, T.D. McCay, C.R. Hubbard, W.D. Porter, and O.B. Cavin: Scripta Metall. Mater., 1993, vol. 28, pp. 1359–64.

    Article  CAS  Google Scholar 

  27. 27.

    D.H. Li, X.Q. Chen, P.X. Fu, X.P. Ma, H.W. Liu, Y. Chen, Y.F. Cao, Y.K. Luan, and Y.Y. Li: Nat. Commun., 2014, vol. 5, pp. 6291–98.

    Google Scholar 

  28. 28.

    S. Radwitz, J. Morscheiser, and B. Friedrich: European Metallurgical Conference, Weimar, Germany, 2013.

  29. 29.

    X.C. Chen, C.B. Shi, H.J. Guo, F. Wang, H. Ren, and D. Feng: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1596–1607.

    Article  CAS  Google Scholar 

  30. 30.

    J. Fu: Acta. Metall. Sin., 1979, vol. 15, pp. 526–39.

    CAS  Google Scholar 

  31. 31.

    J. Fu and J. Zhu: Acta. Metall. Sin., 1964, vol. 7, pp. 250–62.

    Google Scholar 

  32. 32.

    S.W. Cho and H. Suito: ISIJ Int., 1994, vol. 34, pp. 746–54.

    Article  CAS  Google Scholar 

  33. 33.

    K. Fujii, T. Nagasaka and M. Hino: ISIJ Int., 2000, vol. 40, pp. 1059–66.

    Article  CAS  Google Scholar 

  34. 34.

    G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, W.E Hammetter (1989) Metall. Trans. A 20A: 2149–58.

    Article  CAS  Google Scholar 

  35. 35.

    M.E. Fraser and A. Mitchell: Ironmak. Steelmak., 1976, vol. 3, pp. 279–87.

    CAS  Google Scholar 

  36. 36.

    . Hou, Z.H. Jiang, Y.W. Dong, Y. Li, W. Gong, and F.B. Liu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1885–97.

    Article  CAS  Google Scholar 

  37. 37.

    A. Karasev and H. Suito: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 249–57.

    Article  CAS  Google Scholar 

  38. 38.

    H. Ohta and H. Suito: ISIJ Int., 2003, vol. 43, pp. 1293–1300.

    Article  CAS  Google Scholar 

  39. 39.

    W.L. Jerzak and Z. Kalicka: Arch. Metall. Mater., 2010, vol. 55, pp. 441–47.

    CAS  Google Scholar 

  40. 40.

    Y. Kawashita and H. Suito: ISIJ Int., 1995, vol. 35, pp. 1468–76.

    Article  CAS  Google Scholar 

  41. 41.

    S.K. Jo, S.H. Kim, and B. Song: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 703–09.

    Article  CAS  Google Scholar 

  42. 42.

    J.J. Pak, Y.S. Jeong, S.J. Tae, D.S. Kim, and Y.Y. Lee: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 489–93.

    Article  CAS  Google Scholar 

  43. 43.

    H. Wada and R.D. Pehlke: Metall. Trans. B, 1980, vol. 11B, pp. 51–56.

    Article  CAS  Google Scholar 

  44. 44.

    T. Yoshikawa and K. Morita: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 671–80.

    Article  CAS  Google Scholar 

  45. 45.

    J.N. DuPont, M.R. Notis, A.R. Marder, C.V. Robino, and J. R. Michael: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2785–96.

    Article  CAS  Google Scholar 

  46. 46.

    X. Shi, S.C. Duan, W.S. Yang, H.J. Guo, and J. Guo: Metall. Mater. Trans. B, 2018, vol. 49B. pp. 1883–97.

    Article  CAS  Google Scholar 

  47. 47.

    Y.N. Yu: Foundation of Materials Science, China Higher Education Press, Beijing, 2006.

    Google Scholar 

  48. 48.

    X. Shi, J.Z. Wu, H.J. Guo, J. Guo, S.C. Duan, and W.S. Yang: J. Cent. S. Univ. Med. Sci., 2018, vol. 49, pp. 518–28.

    Google Scholar 

  49. 49.

    R. Abdulrahman and A. Hendry: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1103–12.

    Article  CAS  Google Scholar 

  50. 50.

    C. Kowanda and M. Speidel: Scripta Mater., 2003, vol. 48, pp. 1073–78

    Article  CAS  Google Scholar 

Download references


This study was financially supported by the National Natural Science Foundation of China (NSFC) Grant No. U1560203, the National Science Foundation for Young Scientists of China No. 51704021, and the Fundamental Research Fund for the Central Universities of China No. FRF-TP-16-079A1.

Author information



Corresponding author

Correspondence to Han-Jie Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 24, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Duan, S., Yang, W. et al. Effects of Remelting Current on Structure, Composition, Microsegregation, and Inclusions in Inconel 718 Electroslag Remelting Ingots. Metall Mater Trans B 50, 3072–3087 (2019). https://doi.org/10.1007/s11663-019-01685-y

Download citation