Numerical Prediction of Oscillation Behaviors of a Multiphase Core–Shell Droplet During Interfacial Tension Measurement


Interfacial tension between molten high-temperature materials is to be measured using the electrostatic levitation furnace (ELF) and the electromagnetic levitator (ISS-EML) aboard the International Space Station. A levitated compound droplet of a concentric core–shell structure is excited either by an impulsive electromagnetic field or by a superimposed electrostatic field. The oscillation behavior of the compound droplet is analyzed to measure interfacial tension at the interface of the two phases. In support of the space experiments, a computational fluid dynamic model was developed to characterize the oscillation behavior of multiphase core–shell droplet. The developed model predicted the interfacial tension between molten copper-rich and cobalt-rich phases with a difference of 3.3 pct compared to the values reported in literature. The developed model is being utilized to investigate the influence of various test parameters on measured surface tension and also being extended for molten steel–molten slag systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    M. Watanabe, K. Onodera, S. Ueno, T. Tsukada, T. Tanaka, H. Tamaru, and T. Ishikawa: Proc. 10th Int. Conf. Molten Slags, Fluxes and Salts, 2016, pp. 1245–52.

  2. 2.

    H. Tamaru, C. Koyama, H. Saruwatari, Y. Nakamura, T. Ishikawa, and T. Takada, Microgravity Sci. Technol., 2018, vol. 30, pp. 1-9.

    Article  Google Scholar 

  3. 3.

    I. Egry, Z. Metallkd., 2002, vol. 93, pp. 528-531.

    CAS  Article  Google Scholar 

  4. 4.

    K. Sumaria, R. W. Hyers, and J. Lee, Mater. Process. Fundam., 2017, pp. 65–72.

  5. 5.

    I. Egry, L, Ratke, M. Kolbe, D. Chatain, S. Curiotto, L, Battezzati, E. Johnson, and N. Pryds, J. Mater. Sci., 2010, vol. 45, pp. 1979-1985.

    CAS  Article  Google Scholar 

  6. 6.

    T. Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals, Oxford University Press,, New York, NY, 1988.

    Google Scholar 

  7. 7.

    W.-K. Rhim, K. Ohsaka, P.-F. Paradis, and R. E. Spjut, Rev. Sci. Instrum., 1999, vol. 70, pp. 2796-2801.

    CAS  Article  Google Scholar 

  8. 8.

    A. Rulison, J. L. Watkins, and B. Zambrano, Rev. Sci. Instrum., 1997, vol. 68, pp. 2856-2863.

    CAS  Article  Google Scholar 

  9. 9.

    E. H. Brandt, Science, 1989, vol. 243, pp. 349-355.

    CAS  Article  Google Scholar 

  10. 10.

    W. A. Peifer, JOM, 1965, vol. 17, pp. 487-493.

    Article  Google Scholar 

  11. 11.

    P. M. Gammel, A. P. Croonquist, and T. G. Wang, J. Acoust. Soc. Am., 1988, vol. 83, pp. 496-501.

    Article  Google Scholar 

  12. 12.

    D. A. Winborne, P. C. Nordine, D. E. Rosner, and N. F. Marley, Metall. Trans., 1976, vol. 7B, pp. 711-713.

    CAS  Article  Google Scholar 

  13. 13.

    W. A. Oran and L. H. Berge, Rev. Sci. Instrum., 1982, vol. 53, pp. 851-853.

    Article  Google Scholar 

  14. 14.

    P.-F. Paradis, T. Ishikawa, J. Yu, and S. Yoda, Rev. Sci. Instrum., 2001, vol. 72, pp. 2811-2815.

    CAS  Article  Google Scholar 

  15. 15.

    F. R. S. Rayleigh, Proc. R. Soc. Lond., 1879, 29, 196–99

    Google Scholar 

  16. 16.

    H. Lamb, Proc. Lond. Math. Soc., 1881, vol. 13, no. 1, pp. 51-66.

    Article  Google Scholar 

  17. 17.

    P. V. R. Suryanarayana and Y. Bayazitoglu, Int. J. Thermophys., 1991, vol. 12, pp. 137-151.

    CAS  Article  Google Scholar 

  18. 18.

    R. W. Hyers, G. Trapaga, and B. Abedian, Metall. Mater. Trans., 2003, vol. 34B, pp. 29-36.

    CAS  Article  Google Scholar 

  19. 19.

    R. W. Hyers, D. M. Matson, K. F. Kelton, and J. R. Rogers, Ann. NY Acad. Sci., 2004, vol. 1027, pp. 474-494.

    Article  Google Scholar 

  20. 20.

    R. W. Hyers, Meas. Sci. Technol., 2005, vol. 16, pp. 394-401.

    CAS  Article  Google Scholar 

  21. 21.

    X. Xiao, R. W. Hyers, R. Wunderlich, and D. M. Matson, App. Phys. Lett., 2018, vol. 113, art. no. 011903.

    Article  Google Scholar 

  22. 22.

    S. R. Berry, R. W. Hyers, L. M. Racz, and B. Abedian, Int. J. Thermophys., 2005, vol. 26, pp. 1565-1581.

    CAS  Article  Google Scholar 

  23. 23.

    W. Song, L. Tang, X. Zhu, Y. Wu, Z. Zhu, and S. Koyama, Fuel, 2010, vol. 89, pp. 1709-1715.

    CAS  Article  Google Scholar 

Download references


This research has been funded by NASA under Grant NNX14AR85G.

Author information



Corresponding author

Correspondence to Jonghyun Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 28, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sumaria, K.J., Hyers, R.W. & Lee, J. Numerical Prediction of Oscillation Behaviors of a Multiphase Core–Shell Droplet During Interfacial Tension Measurement. Metall Mater Trans B 50, 3012–3019 (2019).

Download citation