Basic Oxygen Furnace: Assessment of Recent Physicochemical Models

Abstract

Modeling of the basic oxygen furnace (BOF) process, both for online monitoring and fundamental research, has gained importance in steelmaking industry over the past few decades. Especially models integrating fundamental physicochemical relations are appealing. Even though a vast amount of these kind of models and submodels can be found in the literature, no recent review paper is available which thoroughly discusses the most up-to-date BOF modeling methods. This study aims to do so. In the introductory chapters, an overview is given on the assumptions and models for underlying BOF phenomena, which are frequently used in the BOF models and submodels. Focus was put on six models with emphasis on the chemical aspect of the BOF process. For each model, its assumptions are given and subsequently evaluated, highlighting both their strengths and limitations. The six different models are also compared with each other. Finally, opportunities for future research are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1

Reprinted with permission from Ref. [12]

Fig. 2
Fig. 3

Reprinted with permission from Ref. [17]

Fig. 4

Reprinted with permission from Ref. [25]

Fig. 5

Reprinted with permission from Ref. [31]

Fig. 6

Reprinted with permission from Ref. [40]

Fig. 7

Reprinted with permission from Ref. [47]

Fig. 8

Reprinted with permission from Ref. [32]

Fig. 9

Reprinted with permission from Ref. [9]

Fig. 10

Reprinted with permission from Ref. [9]

Fig. 11

Reprinted with permission from Ref. [8]

Fig. 12

Reprinted with permission from Ref. [93]

References

  1. 1.

    World Steel Association: World steel in figures 2018. https://www.worldsteel.org/. Accessed 16 Jan 2019.

  2. 2.

    R.D. Pehlke, W.F. Porter, R.F. Urban, and J.M. Gaines: BOF Steelmaking, Introduction, Theory and Design, vol. 1, The Iron and Steel Institute of the American Institute of Mining, New York, 1974.

    Google Scholar 

  3. 3.

    E.T. Turkdogan: Fundamentals of Steelmaking, The Institute of Materials, London, 1996.

    Google Scholar 

  4. 4.

    S. Seetharaman, A. McLean, R. Guthrie, and S. Sridhar: Treatise on Process Metallurgy, vol. 2, Elsevier, Oxford, 2013.

    Google Scholar 

  5. 5.

    J. Martinsson and D. Sichen: ISIJ International, 2019, vol. 59, pp. 46–50.

    CAS  Google Scholar 

  6. 6.

    Publications Office of the European Union: Imphos. https://publications.europa.eu/en/publication-detail/-/publication/8aecbb7c-f77f-4ee7-bc38-9ebb13b52faf/language-en. Accessed 6 Nov 2018.

  7. 7.

    7 H.W. Meyer, W.F. Porter, G.C. Smith, and J. Szekely: JOM, 1968, vol. 20, pp. 35–42.

    CAS  Google Scholar 

  8. 8.

    R. Sarkar, P. Gupta, S. Basu, and N.B. Ballal: Metall. Mater. Trans. B, 2015, vol. 46, pp. 961–76.

    Google Scholar 

  9. 9.

    B.K. Rout, G. Brooks, M.A. Rhamdhani, Z. Li, F.N.H. Schrama, and J. Sun: Metall. Mater. Trans. B, 2018, vol. 49, pp. 537–57.

    Google Scholar 

  10. 10.

    B.K. Rout, G. Brooks, and M. Rhamdhani: AISTech 2015 Iron and Steel Technology Conference, 2015, pp. 3225–37.

  11. 11.

    11 E. Chen and K.S. Coley: Ironmaking & Steelmaking, 2010, vol. 37, pp. 541–545.

    CAS  Google Scholar 

  12. 12.

    N. Dogan: PhD thesis, Swinburne University of Technology, 2011.

  13. 13.

    A.I. van Hoorn, J.T. Konynenburg, and P.J. Kreyger: in The Role of Slag in Basic Oxygen Steelmaking Processes, W.K. Lu, ed., McMaster University Press, Toronto, 1976.

  14. 14.

    A.I. Hoorn, J.T. Konijnenburg, and P.J. Kreijger: Proceedings McMaster Symposium on Iron and Steelmaking, 1976, p. 1–2.

  15. 15.

    15 C. Cicutti, M. Valdez, T. Perez, R. Donayo, and J. Petroni: Latin American applied research, 2002, vol. 32, pp. 237–240.

    CAS  Google Scholar 

  16. 16.

    K.S. Coley: Journal of Mining and Metallurgy B: Metallurgy, 2013, vol. 49, pp. 191–9.

    CAS  Google Scholar 

  17. 17.

    17 Q. Li, M. Li, S. Kuang, and Z. Zou: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1494–509.

    Google Scholar 

  18. 18.

    18 N.A. Molloy: Journal of the iron and steel institute, 1970, vol. 208, p. 943-50.

    Google Scholar 

  19. 19.

    19 H.C. Araújo, E.F. Rodrigues, and E.M. Leal: REM - International Engineering Journal, 2018, vol. 71, pp. 53–7.

    Google Scholar 

  20. 20.

    20 N. Asahara, K. Naito, I. Kitagawa, M. Matsuo, M. Kumakura, and M. Iwasaki: steel research international, 2011, vol. 82, pp. 587–94.

    CAS  Google Scholar 

  21. 21.

    21 R. Sambasivam, S.N. Lenka, F. Durst, M. Bock, S. Chandra, and S.K. Ajmani: Metall. Mater. Trans. B, 2007, vol. 38, pp. 45–53.

    CAS  Google Scholar 

  22. 22.

    22 S.C. Koria and K.W. Lange: Steel Research, 1987, vol. 58, pp. 421–6.

    CAS  Google Scholar 

  23. 23.

    D. Mombelli, C. Mapelli, S. Barella, A. Gruttadauria, R. Sosio, G. Valentino, and V. Ancona: Steel Res. Int., 2018, vol. 89, p. 1700467.

    Google Scholar 

  24. 24.

    K.S. Coley, E. Chen, and M. Pomeroy: in Celebrating the Megascale, P.J. Mackey, E.J. Grimsey, R.T. Jones, and G.A. Brooks, eds., Springer, New York, 2016, pp. 289–302.

  25. 25.

    B.K. Rout, G. Brooks, Subagyo, M.A. Rhamdhani, and Z. Li: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3350–61.

    Google Scholar 

  26. 26.

    26 Q.L. He and N. Standish: ISIJ International, 1990, vol. 30, pp. 305–9.

    CAS  Google Scholar 

  27. 27.

    R. Li and R.L. Harris: Pyrometallurgy 95 Conference Proceedings, IMM, London, 1995, p. 107.

  28. 28.

    B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice-Hall, New York, 1993.

    Google Scholar 

  29. 29.

    G. Subagyo, G.A. Brooks, K.S. Coley, and G.A. Ions: ISIJ Int., 2003, vol. 43, pp. 983–9.

    CAS  Google Scholar 

  30. 30.

    S. Sabah, M. Alam, G. Brooks, and J. Naser: Scanmet IV 4th International Conference, Lulea, Sweden, 2012.

  31. 31.

    31 G. Brooks, Y. Pan, and K. Coley: Metall. Mater. Trans. B, 2005, vol. 36, pp. 525–535.

    CAS  Google Scholar 

  32. 32.

    32 N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ international, 2011, vol. 51, pp. 1086–1092.

    CAS  Google Scholar 

  33. 33.

    33 N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ international, 2011, vol. 51, pp. 1093–1101.

    CAS  Google Scholar 

  34. 34.

    34 N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ international, 2011, vol. 51, pp. 1102–1109.

    CAS  Google Scholar 

  35. 35.

    N. Dogan, G. Brooks, and M. Rhamdhani: Faculty of Engineering - Papers (Archive), 2010, pp. 1091–1101.

  36. 36.

    36 S.C. Koria and K.W. Lange: Metall. Mater. Trans. B, 1984, vol. 15, pp. 109–16.

    CAS  Google Scholar 

  37. 37.

    37 E.W. Mulholland, G.S.F. Hazeldean, and M.W. Davies: J. Iron Steel Inst., 1973, vol. 211, pp. 632–639.

    CAS  Google Scholar 

  38. 38.

    38 C.L. Molloseau and R.J. Fruehan: Metall. Mater. Trans. B, 2002, vol. 33, pp. 335–44.

    CAS  Google Scholar 

  39. 39.

    39 B. Sarma, A.W. Cramb, and R.J. Fruehan: Metall. Mater. Trans. B, 1996, vol. 27, pp. 717–30.

    CAS  Google Scholar 

  40. 40.

    40 H. Sun: ISIJ International, 2006, vol. 46, pp. 1560–9.

    CAS  Google Scholar 

  41. 41.

    41 K. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2343–53.

    Google Scholar 

  42. 42.

    M.-A. Van Ende and I.-H. Jung: in Computational Materials System Design, D. Shin and J. Saal, eds., Springer, Cham, 2018, pp. 47–66.

  43. 43.

    43 A. Kruskopf and V.-V. Visuri: Metall. Mater. Trans. B, 2017, vol. 48, pp. 3281–300.

    Google Scholar 

  44. 44.

    44 J. Ruuska, A. Sorsa, J. Lilja, and K. Leiviskä: IFAC-PapersOnLine, 2017, vol. 50, pp. 13784–9.

    Google Scholar 

  45. 45.

    45 F. He and L. Zhang: Journal of Process Control, 2018, vol. 66, pp. 51–8.

    CAS  Google Scholar 

  46. 46.

    46 C. Kattenbelt and B. Roffel: Metall. Mater. Trans. B, 2008, vol. 39, pp. 764–9.

    CAS  Google Scholar 

  47. 47.

    47 M.-A. van Ende, Y.-M. Kim, M.-K. Cho, J. Choi, and I.-H. Jung: Metall. Mater. Trans. B, 2011, vol. 42, pp. 477–89.

    Google Scholar 

  48. 48.

    B. Deo and A.K. Shukla: 5th International Congress on the Science and Technology of Steelmaking, Dresden, Germany, 2012.

  49. 49.

    49 C. Chigwedu, J. Kempken, and W. Pluschkell: Stahl und Eisen, 2006, vol. 126, pp. 25–31.

    CAS  Google Scholar 

  50. 50.

    C. Kattenbelt: PhD thesis, University of Twente, 2008.

  51. 51.

    51 N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ International, 2009, vol. 49, pp. 1474–82.

    CAS  Google Scholar 

  52. 52.

    G.A. Brooks, M.A. Rhamdhani, K.S. Coley, G. Subagyo, and Y. Pan: Metall. Mater. Trans. B, 2009, vol. 40, pp. 353–62.

    CAS  Google Scholar 

  53. 53.

    53 D.R. Sain and G.R. Belton: Metall. Mater. Trans. B, 1976, vol. 7, pp. 235–44.

    CAS  Google Scholar 

  54. 54.

    54 H.G. Lee and Y.K. Rao: Ironmaking & Steelmaking, 1988, vol. 15, pp. 238–243.

    Google Scholar 

  55. 55.

    55 P.A. Distin, G.D. Hallett, and F.D. Richardson: J Iron Steel Inst, 1968, vol. 206, pp. 821–833.

    CAS  Google Scholar 

  56. 56.

    56 D.R. Sain and G.R. Belton: Metall. Mater. Trans. B, 1978, vol. 9, pp. 403–7.

    CAS  Google Scholar 

  57. 57.

    H. Lohe: VDI-Zeitschrift, 1967.

  58. 58.

    B.K. Rout, G. Brooks, M. Akbar-Rhamdhani, Z. Li, F.N.H. Schrama, and A. Overbosch: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1022–33.

    Google Scholar 

  59. 59.

    B.K. Rout, G.A. Brooks, Z. Li, and M.A. Rhamdhani: AISTech 2016 Proceedings, 2016, pp. 1019–26.

  60. 60.

    B.K. Rout, G. Brooks, M. Akbar-Rhamdhani, Z. Li, F.N.H. Schrama, and W. van der Knoop: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2191–2208.

    Google Scholar 

  61. 61.

    61 K. Ito and R.J. Fruehan: Metall. Mater. Trans. B, 1989, vol. 20, pp. 509–14.

    CAS  Google Scholar 

  62. 62.

    62 B.T. Chao: Journal of Heat Transfer, 1969, vol. 91, pp. 273–280.

    Google Scholar 

  63. 63.

    63 A.K. Hewage, B.K. Rout, G. Brooks, and J. Naser: Ironmaking & Steelmaking, 2016, vol. 43, pp. 358–370.

    CAS  Google Scholar 

  64. 64.

    64 K.-C. Chou, U.B. Pal, and R.G. Reddy: ISIJ international, 1993, vol. 33, pp. 862–868.

    CAS  Google Scholar 

  65. 65.

    65 K. Narita, T. Makino, H. Matusumo, A. Hikosa, and J. Katsuda: Tetsu-to-Hagané, 1983, vol. 69, pp. 1722–1729.

    CAS  Google Scholar 

  66. 66.

    66 H. Suito and R. Inoue: ISIJ international, 1995, vol. 35, pp. 266–271.

    CAS  Google Scholar 

  67. 67.

    F.D. Richardson: Physical Chemistry of Melts in Metallurgy, Academic Press (Elsevier), London, 1974.

  68. 68.

    68 Y. Ogasawara, Y. Miki, Y. Uchida, and N. Kikuchi: ISIJ international, 2013, vol. 53, pp. 1786–1793.

    CAS  Google Scholar 

  69. 69.

    69 S.-M. Jung, C.-H. Rhee, and D.-J. Min: ISIJ International, 2002, vol. 42, pp. 63–70.

    CAS  Google Scholar 

  70. 70.

    70 J.M. Park: Steel Research, 2002, vol. 73, pp. 39–43.

    CAS  Google Scholar 

  71. 71.

    71 C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, and J. Melançon: Calphad, 2016, vol. 54, pp. 35–53.

    CAS  Google Scholar 

  72. 72.

    Y. Lytvynyuk, J. Schenk, M. Hiebler, and A. Sormann: steel research international, 2014, vol. 85, pp. 537–543.

    CAS  Google Scholar 

  73. 73.

    73 Y. Lytvynyuk, J. Schenk, M. Hiebler, and A. Sormann: steel research international, 2014, vol. 85, pp. 544–563.

    CAS  Google Scholar 

  74. 74.

    Y. Lytvynyuk, J Schenk, M. Hiebler, and H. Mizelli: 6th European Oxygen Steelmaking Conference, Stockholm, Sweden, 2011.

  75. 75.

    B.M. Boychenko, V.B. Okhotskiy, and P.S. Kharlashin: Dnipro-VAL: Dnipropetrovsk, Ukraine.

  76. 76.

    76 S. Ohguchi, D.G.C. Robertson, B. Deo, P. Grieveson, and J.H. Jeffes: Ironmaking & Steelmaking, 1984, vol. 85, pp. 202–13.

    Google Scholar 

  77. 77.

    The Japan Society for the Promotion of Science and The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, 1988.

    Google Scholar 

  78. 78.

    78 G.K. Sigworth and J.F. Elliott: Metal Science, 1974, vol. 8, pp. 298–310.

    CAS  Google Scholar 

  79. 79.

    V.A. Grigoryan, L.N. Belyanchikov, and A.Y. Stomakhin: Gases in Steel and Metal Quality, Metallurgiya, Moscow, 1983.

    Google Scholar 

  80. 80.

    80 S. Kitamura, H. Shibata, and N. Maruoka: steel research international, 2008, vol. 79, pp. 586–90.

    CAS  Google Scholar 

  81. 81.

    81 S. Kitamura, T. Kitamura, K. Shibata, Y. Mizukami, S. Mukawa, and J. Nakagawa: ISIJ international, 1991, vol. 31, pp. 1322–1328.

    CAS  Google Scholar 

  82. 82.

    E.T. Turkdogan, R.J. Fruehan, and R.J. Fruehan: The Making, Shaping and Treating of Steel, Steelmaking and Refining, Vol. 2, AISE Steel Foundation, Pittsburgh, 1998.

    Google Scholar 

  83. 83.

    83 E.T. Turkdogan: ISIJ International, 2001, vol. 41, pp. 930–2.

    CAS  Google Scholar 

  84. 84.

    84 A. Kruskopf: Metall. Mater. Trans. B, 2017, vol. 48, pp. 619–31.

    Google Scholar 

  85. 85.

    85 A. Kruskopf: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1195–206.

    Google Scholar 

  86. 86.

    86 A. Chatterjee, N.-O. Lindfors, and J. Wester: SEAISI Q., July 1976, 5-3, 6-19.

    Google Scholar 

  87. 87.

    87 M.H.A. Piro, S. Simunovic, T.M. Besmann, B.J. Lewis, and W.T. Thompson: Computational Materials Science, 2013, vol. 67, pp. 266–72.

    CAS  Google Scholar 

  88. 88.

    88 M.H.A. Piro and S. Simunovic: Calphad, 2012, vol. 39, pp. 104–10.

    CAS  Google Scholar 

  89. 89.

    89 J.R. Taylor and A.T. Dinsdale: Calphad, 1990, vol. 14, pp. 71–88.

    CAS  Google Scholar 

  90. 90.

    90 S. Petersen and K. Hack: International Journal of Materials Research, 2007, vol. 98, pp. 935–45.

    CAS  Google Scholar 

  91. 91.

    Schlackenatlas, Düsseldorf, Stahleisen, 1981.

  92. 92.

    92 M.-A. Van Ende and I.-H. Jung: Metall. Mater. Trans. B, 2017, vol. 48, pp. 28–36.

    Google Scholar 

  93. 93.

    M.-A. Van Ende and I.-H. Jung: Proceedings Asia Steel International Conference 2015, The Iron and Steel Institute of Japan, Yokohama, 2015.

  94. 94.

    94 A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31, pp. 651–9.

    CAS  Google Scholar 

  95. 95.

    95 A.D. Pelton and P. Chartrand: Metall and Mat Trans A, 2001, vol. 32, pp. 1355–60.

    CAS  Google Scholar 

  96. 96.

    96 P. Chartrand and A.D. Pelton: Metall and Mat Trans A, 2001, vol. 32, pp. 1397–407.

    CAS  Google Scholar 

  97. 97.

    97 A.D. Pelton, P. Chartrand, and G. Eriksson: Metall and Mat Trans A, 2001, vol. 32, pp. 1409–16.

    Google Scholar 

  98. 98.

    98 M. Hillert: Journal of Alloys and Compounds, 2001, vol. 320, pp. 161–76.

    CAS  Google Scholar 

  99. 99.

    99 C.W. Bale and A.D. Pelton: Metall and Mat Trans A, 1990, vol. 21, pp. 1997–2002.

    CAS  Google Scholar 

  100. 100.

    100 I.-H. Jung, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35, pp. 493–507.

    CAS  Google Scholar 

  101. 101.

    H. Gaye, M. Wanin, P. Gugliermina, and P. Schittly: Rev. Metall., 1985, vol. 82, p. 121.

    Google Scholar 

  102. 102.

    102 A.N. Grundy, H. Liu, I.-H. Jung, S.A. Decterov, and A.D. Pelton: IJMR, 2008, vol. 99, pp. 1185–94.

    CAS  Google Scholar 

  103. 103.

    103 A.N. Grundy, I.-H. Jung, A.D. Pelton, and S.A. Decterov: IJMR, 2008, vol. 99, pp. 1195–209.

    CAS  Google Scholar 

  104. 104.

    104 A.N. Grundy, I.-H. Jung, A.D. Pelton, and S.A. Decterov: International Journal of Materials Research, 2008, vol. 99, pp. 1195–1209.

    CAS  Google Scholar 

  105. 105.

    105 S. Khadhraoui, H.-J. Odenthal, S. Das, M. Schlautmann, K. Hack, B. Glaser, and R. Woolf: La Metallurgia Italiana, 2018, vol. 11/12, pp. 5–16.

    Google Scholar 

  106. 106.

    M. Schlautmann, B. Kleimt, S. Khadhraoui, K. Hack, P. Monheim, B. Glaser, R. Antonic, M. Adderley, and F. Schrama: 3rd European Steel Technology and Application Days (ESTAD), Vienna, Austria, 2017.

  107. 107.

    107 F. Pahlevani, S. Kitamura, H. Shibata, and N. Maruoka: steel research international, 2010, vol. 81, pp. 617–22.

    CAS  Google Scholar 

  108. 108.

    108 D. Baricová, A. Pribulová, P. Futáš, B. Buľko, P. Demeter, D. Baricová, A. Pribulová, P. Futáš, B. Buľko, and P. Demeter: Metals, 2018, vol. 8, p. 844.

    Google Scholar 

  109. 109.

    109 K.C. Mills and B.J. Keene: International Materials Reviews, 1987, vol. 32, pp. 1–120.

    CAS  Google Scholar 

  110. 110.

    S.A. Decterov, A.N. Grundy, I.-H. Jung, and A.D. Pelton: AIP Conference Proceedings, vol. 963, AIP, 2007, pp. 404–07.

  111. 111.

    111 A. Kondratiev, P.C. Hayes, and E. Jak: ISIJ international, 2006, vol. 46, pp. 368–374.

    CAS  Google Scholar 

  112. 112.

    112 G.-H. Zhang, K.-C. Chou, and K. Mills: Metall. Mater. Trans. B, 2014, vol. 45, pp. 698–706.

    Google Scholar 

  113. 113.

    113 Z. Liu, L. Pandelaers, B. Blanpain, and M. Guo: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2469–86.

    Google Scholar 

  114. 114.

    114 R. Roscoe: British Journal of Applied Physics, 1952, vol. 3, p. 267.

    Google Scholar 

  115. 115.

    115 A. Kondratiev and E. Jak: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1027–1032.

    CAS  Google Scholar 

  116. 116.

    116 M. Hanao, T. Tanaka, M. Kawamoto, and K. Takatani: ISIJ International, 2007, vol. 47, pp. 935–9.

    CAS  Google Scholar 

  117. 117.

    117 Butler John Alfred Valentine and Kendall James Pickering: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1932, vol. 135, pp. 348–75.

    Google Scholar 

  118. 118.

    118 S.-K. Kim, W. Wang, and Y.-B. Kang: Met. Mater. Int., 2015, vol. 21, pp. 765–74.

    CAS  Google Scholar 

  119. 119.

    119 M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, and M. Hämäläinen: ISIJ International, 2007, vol. 47, pp. 38–43.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by VLAIO, the Flanders Innovation & Entrepreneurship Agency, in cooperation with ArcelorMittal under Grant HBC.2017.0205. I. Bellemans holds a research grant from Ghent University (BOF17/PDO/012). L. De Vos wants to thank S. De Clercq for proofreading of the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lotte De Vos or Inge Bellemans or Kim Verbeken.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 29, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Vos, L., Bellemans, I., Vercruyssen, C. et al. Basic Oxygen Furnace: Assessment of Recent Physicochemical Models. Metall Mater Trans B 50, 2647–2666 (2019). https://doi.org/10.1007/s11663-019-01677-y

Download citation