Liquid Inclusion Distortion by Lens Shape Effect: In Situ Observation and Quantification on LCAK Steels Using HT-CSLM

Abstract

Because of interfacial and surface tension, micron-sized liquid oxide droplets are expected to change from spherical (when fully immersed in liquid steel) to lens shape on top of steel. Inclusion sizes were measured by automated analysis of polished sections of calcium-treated aluminum-killed steel. A sample of the same steel was remelted and observed using confocal scanning laser microscopy. Droplets on the steel surface appear to have approximately twice the diameter of fully immersed spherical inclusions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    J. Ma, B. Zhang, D. Xu, E.H. Han, and W. Ke: Int. J. Fatigue, 2010, vol. 32, pp. 1116–25.

    CAS  Article  Google Scholar 

  2. 2.

    J.M. Zhang, S.X. Li, Z.G. Yang, G.Y. Li, W.J. Hui, and Y.Q. Weng: Int. J. Fatigue, 2007, vol. 29, pp. 765–71.

    CAS  Article  Google Scholar 

  3. 3.

    Ø. Grong, L. Kolbeinsen, C. van der Eijk, and G. Tranell: ISIJ Int., 2006, vol. 46, pp. 824–31.

    CAS  Article  Google Scholar 

  4. 4.

    H. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 936–45.

    CAS  Article  Google Scholar 

  5. 5.

    H. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 946–55.

    CAS  Article  Google Scholar 

  6. 6.

    M. Olette: Steel Res. Int., 1988, vol. 59, pp. 246–56.

    CAS  Article  Google Scholar 

  7. 7.

    E.W. Weisstein: Spherical Cap. From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/SphericalCap.html. Last visit March 2019.

  8. 8.

    I. Egry, E. Ricci, R. Novakovic, S. Ozawa: Adv. Colloid Interface Sci., 2010, vol. 159, pp. 198-212.

    CAS  Article  Google Scholar 

  9. 9.

    M. Wegener, L. Muhmood, S. Sun, and A. V. Deev: Ind. Eng. Chem. Res., 2013, vol. 52, pp. 16444–56.

    CAS  Article  Google Scholar 

  10. 10.

    S.-C. Park, H. Gaye, and H.-G. Lee: Ironmak. Steelmak., 2009, vol. 36, pp. 3–11.

    CAS  Article  Google Scholar 

  11. 11.

    I. Jimbo, Y. Chung, and A.W. Cramb: ISIJ Int., 1996, vol. 36, pp. S42-S45.

    Article  Google Scholar 

  12. 12.

    D. Tang, M.E. Ferreira, and P.C. Pistorius: Microsc. Microanal., 2017, vol. 23, pp. 1082–90.

    CAS  Article  Google Scholar 

  13. 13.

    N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43, pp. 830–840.

    Article  Google Scholar 

  14. 14.

    J. Tan and P.C. Pistorius: Metall. Mater. Trans. B, 2013, vol. 44, pp. 483-486.

    Article  Google Scholar 

  15. 15.

    M.D. Higgins: Am. Mineral., 2000, vol. 85, pp. 1105-1116.

    CAS  Article  Google Scholar 

Download references

The authors thank the industrial company members of the Center for Iron and Steelmaking Research at Carnegie Mellon University for both financial and technical support of this work. The authors acknowledge the use of the Materials Characterization Facility at CMU supported by Grant MCF-677785.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petrus Christiaan Pistorius.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 21, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferreira, M.E., Pistorius, P.C. & Fruehan, R.J. Liquid Inclusion Distortion by Lens Shape Effect: In Situ Observation and Quantification on LCAK Steels Using HT-CSLM. Metall Mater Trans B 50, 2498–2501 (2019). https://doi.org/10.1007/s11663-019-01673-2

Download citation