Microstructure and Properties of Inconel 718 Fabricated by Directed Energy Deposition with In-Situ Ultrasonic Impact Peening


Many inherent issues, such as the detrimental residual stress, columnar grains with anisotropy, and weak mechanical properties, have severely impeded the adoption of metal additive manufacturing (AM) techniques including powder bed fusion and directed energy deposition (DED) processes. In this study, a hybrid AM process that consists of layer-wise laser metal deposition (i.e., a DED process) and in-situ ultrasonic impact peening (UIP) was applied to obtain Inconel 718 superalloy workpieces. Also, for further property enhancement, a post-heat treatment was applied to the deposited material obtained by the hybrid AM process. Scanning electron microscopy and transmission electron microscope were used to investigate the microstructure morphology and reveal the underlying strengthening mechanism. Electron backscatter diffraction was employed to quantitatively study the microstructure resulted from the hybrid AM process and the post-heat treatment. The profile of residual stress along the depth direction was obtained through X-ray diffraction. The results demonstrate that this hybrid AM process is capable of producing high-quality metal parts with significantly refined microstructure, and beneficial compressive residual stress along the depth into surface. Severe plastic strains are introduced by UIP, and the resulted mechanical twinning and dynamic recrystallization play an important role in refining microstructure. The material microstructure is further refined down to 100 µm, and the texture anisotropy is significantly diminished after solution treatment at 980 °C for 1 hour. Under the as-built condition, in-situ ultrasonic peening alters the residual stress component from a tensile state to an overall compressive state with a maximum value of − 190 MPa within the range of measurement depth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    W. E. Frazier: Journal of Materials Engineering and Performance, 2014, Vol. 23, PP. 1917–1928.

    CAS  Article  Google Scholar 

  2. 2.

    J. J. Lewandowski, and M. Seifi: Annual Review of Materials Research, 2016, Vol. 46, PP. 151–186.

    CAS  Article  Google Scholar 

  3. 3.

    D.M. Jacobson and G. Bennett: in Solid Freeform Fabrication Symposium, Austin, TX, Aug, 2006, 2006, pp. 14–16.

  4. 4.

    G. Strano, L. Hao, R. M. Everson, and K. E. Evans: Journal of Materials Processing Technology, 2013, Vol. 213, PP. 589–597.

    CAS  Article  Google Scholar 

  5. 5.

    P. Mercelis, and J.-P. Kruth: Rapid Prototyping Journal, 2006, Vol. 12, PP. 254–265.

    Article  Google Scholar 

  6. 6.

    G. P. Dinda, A. K. Dasgupta, and J. Mazumder: Materials Science and Engineering: A, 2009, Vol. 509, PP. 98–104.

    Article  Google Scholar 

  7. 7.

    H. Qi, M. Azer, and A. Ritter: Metallurgical and Materials Transactions A, 2009, Vol. 40, PP. 2410–2422.

    CAS  Article  Google Scholar 

  8. 8.

    D. H. Smith, J. Bicknell, L. Jorgensen, B. M. Patterson, N. L. Cordes, I. Tsukrov, and M. Knezevic: Materials Characterization, 2016, Vol. 113, PP. 1–9.

    CAS  Article  Google Scholar 

  9. 9.

    C. Sanz, and V. G. Navas: Journal of Materials Processing Technology, 2013, Vol. 213, PP. 2126–2136.

    CAS  Article  Google Scholar 

  10. 10.

    B. AlMangour, and J.-M. Yang: Materials & Design, 2016, Vol. 110, PP. 914–924.

    CAS  Article  Google Scholar 

  11. 11.

    B. AlMangour, and J.-M. Yang: JOM, 2017, Vol. 69, PP. 2309–2313.

    CAS  Article  Google Scholar 

  12. 12.

    N. E. Uzan, S. Ramati, R. Shneck, N. Frage, and O. Yeheskel: Additive Manufacturing, 2018, Vol. 21, PP. 458–464.

    CAS  Article  Google Scholar 

  13. 13.

    W. Guo, R. Sun, B. Song, Y. Zhu, F. Li, Z. Che, B. Li, C. Guo, L. Liu, and P. Peng: Surface and Coatings Technology, 2018, Vol. 349, PP. 503–510.

    CAS  Article  Google Scholar 

  14. 14.

    S. Shiva, I.A. Palani, C.P. Paul, and B. Singh: Application of Lasers in Manufacturing, Springer, Berlin, 2019, pp. 1–20.

    Google Scholar 

  15. 15.

    J. Donoghue, A. A. Antonysamy, F. Martina, P. A. Colegrove, S. W. Williams, and P. B. Prangnell: Materials Characterization, 2016, Vol. 114, PP. 103–114.

    CAS  Article  Google Scholar 

  16. 16.

    W. Zhao, G. C. Zha, M. Z. Xi, and S. Y. Gao: Journal of Materials Engineering and Performance, 2018, Vol. 27, PP. 1746–1752.

    CAS  Article  Google Scholar 

  17. 17.

    N. Kalentics, E. Boillat, P. Peyre, C. Gorny, C. Kenel, C. Leinenbach, J. Jhabvala, and R. E. Logé: Materials & Design, 2017, Vol. 130, PP. 350–356.

    CAS  Article  Google Scholar 

  18. 18.

    M. Zhang, C. Liu, X. Shi, X. Chen, C. Chen, J. Zuo, J. Lu, and S. Ma: Appl. Sci., 2016, vol. 6 (11), art. no. 304, https://doi.org/10.3390/app6110304.

    CAS  Article  Google Scholar 

  19. 19.

    J. Gale, and A. Achuhan: Rapid Prototyping Journal, 2017, Vol. 23, PP. 1185–1194.

    Article  Google Scholar 

  20. 20.

    G. Çam, and M. Koçak: International Materials Reviews, 1998, Vol. 43, PP. 1–44.

    Article  Google Scholar 

  21. 21.

    C. Slama, C. Servant, and G. Cizeron: Journal of Materials Research, 1997, Vol. 12, PP. 2298–2316.

    CAS  Article  Google Scholar 

  22. 22.

    P. L. Blackwell: Journal of Materials Processing Technology, 2005, Vol. 170, PP. 240–246.

    CAS  Article  Google Scholar 

  23. 23.

    A. Thomas, M. El-Wahabi, J. M. Cabrera, and J. M. Prado: Journal of Materials Processing Technology, 2006, Vol. 177, PP. 469–472.

    CAS  Article  Google Scholar 

  24. 24.

    J. J. Schirra, R. H. Caless, and R. W. Hatala: Superalloys, 1991, Vol. 718, PP. 375–388.

    Article  Google Scholar 

  25. 25.

    P. K. Gokuldoss, S. Kolla, and J. Eckert: Materials, 2017, vol. 10 (6), art. no. 672, https://doi.org/10.3390/ma10060672.

    CAS  Article  Google Scholar 

  26. 26.

    S. Prabhakaran, A. Kulkarni, G. Vasanth, S. Kalainathan, P. Shukla, and V. K. Vasudevan: Applied Surface Science, 2018, Vol. 428, PP. 17–30.

    CAS  Article  Google Scholar 

  27. 27.

    J. Z. Lu, K. Y. Luo, Y. K. Zhang, G. F. Sun, Y. Y. Gu, J. Z. Zhou, X. D. Ren, X. C. Zhang, L. F. Zhang, and K. M. Chen: Acta Materialia, 2010, Vol. 58, PP. 5354–5362.

    CAS  Article  Google Scholar 

  28. 28.

    H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, and K. Lu: Acta Materialia, 2003, Vol. 51, PP. 1871–1881.

    CAS  Article  Google Scholar 

  29. 29.

    M. Wang, R. Xin, B. Wang, and Q. Liu: Materials Science and Engineering: A, 2011, Vol. 528, PP. 2941–2951.

    Article  Google Scholar 

  30. 30.

    X. Wang, E. Brünger, and G. Gottstein: Scripta Materialia, 2002, Vol. 46, PP. 875–880.

    CAS  Article  Google Scholar 

  31. 31.

    R. P. Singh, J. M. Hyzak, T. E. Howson, and R. R. Biederman: Superalloys, 1991, Vol. 718, PP. 205–215.

    Article  Google Scholar 

  32. 32.

    Y. Jin, M. Bernacki, A. Agnoli, B. Lin, G. Rohrer, A. Rollett, and N. Bozzolo: Metals, 2016, vol. 6 (1), art. no. 5, https://doi.org/10.3390/met6010005.

    CAS  Article  Google Scholar 

  33. 33.

    J. F. Radavich: in Conference proceedings on superalloy, 1989, 1989, vol. 718, pp. 229–40.

  34. 34.

    Z. Zhang, Y. Feng, Q. Tan, J. Zou, J. Li, X. Zhou, G. Sun, and Y. Wang: Mater. Des., 2019, vol. 166, art. no. 107603, https://doi.org/10.1016/j.matdes.2019.107603.

    CAS  Article  Google Scholar 

Download references


The authors wish to acknowledge the funding support from the National Science Foundation (CMMI# 1563002 and 1746147).

Author information



Corresponding author

Correspondence to Jing Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 27, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shi, J. Microstructure and Properties of Inconel 718 Fabricated by Directed Energy Deposition with In-Situ Ultrasonic Impact Peening. Metall Mater Trans B 50, 2815–2827 (2019). https://doi.org/10.1007/s11663-019-01672-3

Download citation