Assessment of Physicochemical Properties of Electrical Arc Furnace Slag and Their Effects on Foamability

Abstract

The composition of slags of an electric arc furnace (EAF) in a commercial melt shop was systematically analyzed with a focus on slag foaming. Basic behavior of FeO in an EAF slag was confirmed using fundamental thermodynamics. Monoxide ([Mg,Fe,Mn]O = M’O) and spinel ([Mg,Fe]Al2O4) phases in EAF slag were confirmed by X-ray diffraction analysis, and these results were interpreted in the context of equilibrium cooling calculation using FactSage™ software. Furthermore, the distribution of MgO with respect to the M’O-saturation limit at different basicity ratios (=CaO/SiO2=C/S) and temperatures was evaluated. In particular, the relationship between MgO and FeO for C/S ratios ranging from 1.3 to 1.6 was considered with reference to phase equilibria. Foam height was affected by slag viscosity (η) and gas generation according to changes in C/S ratio and FeO content. Foaming index (Σ) decreased with the increasing C/S ratio and FeO content. The measured foam heights were relatively higher than the calculated values, and the result indicates that the effect of M’O on slag foaming in commercial process is remarkable. Therefore, slag chemistry should be optimized based on thermodynamic considerations and thermophysical properties to achieve good foaming characteristics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    J. Bennett and K.S. Kwong: Ironmaking & Steelmaking, 2010, vol. 37, pp. 529-35.

    Article  CAS  Google Scholar 

  2. 2.

    V. Fedina, O. Malahova and A. Sazonov: Sovremennye Naukoemkie Tehnologii (in Russian), 2005, vol. 2, pp. 71-72.

    Google Scholar 

  3. 3.

    R.J. Fruehan and A.S. Foundation: The Making, Shaping, and Treating of Steel: Steelmaking and refining volume, AISE Steel Foundation, Pittsburgh, 1998, pp. 604-08.

    Google Scholar 

  4. 4.

    J.J. Bikerman: Trans. Faraday Soc., 1938, vol. 34, pp. 634-38.

    Article  CAS  Google Scholar 

  5. 5.

    J.J. Bikerman: Ind. Eng. Chem., 1965, vol. 57, pp. 56-62.

    Article  CAS  Google Scholar 

  6. 6.

    K. Ito and R.J. Fruehan: Metall. Trans. B, 1989, vol. 20B, pp. 509-14.

    Article  CAS  Google Scholar 

  7. 7.

    K. Ito and R.J. Fruehan: Metall. Trans. B, 1989, vol. 20B, pp. 515-21.

    Article  CAS  Google Scholar 

  8. 8.

    R. Jiang and R.J. Fruehan: Metall. Trans. B, 1991, vol. 22B, pp. 481-89.

    Article  CAS  Google Scholar 

  9. 9.

    B. Ozturk and R.J. Fruehan: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 1086-88.

    Article  CAS  Google Scholar 

  10. 10.

    Y. Zhang and R.J. Fruehan: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 803-12.

    Article  CAS  Google Scholar 

  11. 11.

    S.M. Jung and R.J. Fruehan: ISIJ Int., 2000, vol. 40, pp. 348-55.

    Article  CAS  Google Scholar 

  12. 12.

    R. Corbari, H. Matsuura, S. Halder, M. Walker and R.J. Fruehan: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 940-48.

    Article  CAS  Google Scholar 

  13. 13.

    S. Seetharaman, A. McLean, R. Guthrie and S. Sridhar: Treatise on Process Metallurgy, Volume 3: Industrial Processes, Part B, Elsevier, Amsterdam, 2014, pp. 1101–04.

  14. 14.

    C. Cooper and J. Kitchener: J. Iron Steel Inst. London, 1959, vol. 9, pp. 48-55.

    Google Scholar 

  15. 15.

    J. Swisher and C. McCabe: Trans. TMS-AIME, 1964, vol. 230, pp. 1669-75.

    CAS  Google Scholar 

  16. 16.

    P. Kozakevitch and T.J. John: JOM, 1969, vol. 21, pp. 57-68.

    Article  CAS  Google Scholar 

  17. 17.

    A. Kapilashrami, M. Görnerup, S. Seetharaman and A.K. Lahiri: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 109-17.

    Article  CAS  Google Scholar 

  18. 18.

    R.A.M. de Almeida, D. Vieira, W.V. Bielefeldt and A.C.F. Vilela: Mater. Res., 2018, vol. 21, pp. 1-8.

    Google Scholar 

  19. 19.

    A.P. Luz, A.G.T. Martinez, F. López, P. Bonadia and V.C. Pandolfelli: Ceram. Int., 2018, vol. 44, pp. 8727-41.

    Article  CAS  Google Scholar 

  20. 20.

    D. Vieira, R.A.M. de Almeida, W.V. Bielefeldt and A.C.F. Vilela: Mater. Res., 2016, vol. 19, pp. 1127-31.

    Article  CAS  Google Scholar 

  21. 21.

    Y. Park and D.J. Min: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 3038-46.

    Article  CAS  Google Scholar 

  22. 22.

    J.S. Han, J.H. Heo and J.H. Park: Ceram. Int., 2019, vol. 45, pp. 10481-91.

    Article  CAS  Google Scholar 

  23. 23.

    H. Larson and J. Chipman: JOM, 1953, vol. 5, pp. 1089-96.

    Article  CAS  Google Scholar 

  24. 24.

    L. Yang and G.R. Belton: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 837-45.

    Article  CAS  Google Scholar 

  25. 25.

    N. Sano: Advanced Physical Chemistry for Process Metallurgy, Academic Press, San Diego, CA, 1997, pp.46-51.

    Google Scholar 

  26. 26.

    C.H.P. Lupis: Chemical Thermodynamics of Materials. Prentice Hall, Englewood Cliffs, NJ, 1993. pp. 155–58.

    Google Scholar 

  27. 27.

    H.S. Kim, D.J. Min and J.H. Park: ISIJ Int., 2001, vol. 41, pp. 317-24.

    Article  CAS  Google Scholar 

  28. 28.

    J.H. Heo, B.S. Kim and J.H. Park: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1352-63.

    Article  CAS  Google Scholar 

  29. 29.

    A. Yamaguchi: Taikabutsu Overseas, 1984, vol. 4, pp. 32-36.

    CAS  Google Scholar 

  30. 30.

    S. Seetharaman: Treatise on Process Metallurgy, Volume 2: Process Phenomena, Elsevier, Amsterdam, 2013. pp. 292–303.

  31. 31.

    J. Bygden, T. DebRoy and S. Seetharaman: Ironmaking & Steelmaking, 1994, vol. 21, pp. 318-23.

    CAS  Google Scholar 

  32. 32.

    P. Zhang and S. Seetharaman: J. Am. Ceram. Soc., 1994, vol. 77, pp. 970-76.

    Article  CAS  Google Scholar 

  33. 33.

    A. Chychko, L. Teng and S. Seetharaman: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1078-85.

    Article  CAS  Google Scholar 

  34. 34.

    M. Sugata, T. Sugiyama and S. Kondo: Tetsu-to-Hagane, 1972, vol. 58, pp. 1363-75.

    Article  CAS  Google Scholar 

  35. 35.

    E.B. Pretorius and R.C. Carlisle: Iron and Steelmaker, 1999, vol. 26, pp. 79-88.

    CAS  Google Scholar 

  36. 36.

    D.J. Min and R.J. Fruehan: Metall. Trans. B, 1992, vol. 23B, pp. 29-37.

    Article  CAS  Google Scholar 

  37. 37.

    S.R. Story, B. Sarma, R.J. Fruehan, A.W. Cramb and G.R. Belton: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 929-32.

    Article  CAS  Google Scholar 

  38. 38.

    K. Seo and R.J. Fruehan: ISIJ Int., 2000, vol. 40, pp. 7-15.

    Article  CAS  Google Scholar 

  39. 39.

    J.H. Heo, Y. Chung and J.H. Park: J. Clean. Prod., 2016, vol. 137, pp. 777–87.

    Article  CAS  Google Scholar 

  40. 40.

    J.H. Heo and J.H. Park: Calphad, 2017, vol. 58, pp. 219–28.

    Article  CAS  Google Scholar 

  41. 41.

    J.H. Heo and J.H. Park: Calphad, 2017, vol. 58, pp. 229–38.

    Article  CAS  Google Scholar 

  42. 42.

    M. Hanao, T. Tanaka, M. Kawamoto and K. Takatani: ISIJ Int., 2007, vol. 47, pp. 935–39.

    Article  CAS  Google Scholar 

  43. 43.

    M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa and M. Hamalainen: ISIJ Int., 2007, vol. 47, pp. 38–43.

    Article  CAS  Google Scholar 

  44. 44.

    L. Muhmood and S. Seetharaman: Metall. Mater. Trans. B, 2010, vol. 41, pp. 833–40.

    Article  CAS  Google Scholar 

  45. 45.

    I.A. Aksay, J.A. Pask and R.F. Davis: J. Am. Ceram. Soc., 1979, vol. 62, pp. 332–36.

    Article  CAS  Google Scholar 

  46. 46.

    Y. Kawai, K. Mori, H. Shiraishi and N. Yamada: Tetsu-to-Hagane, 1976, vol. 62, pp. 53–61.

    Article  CAS  Google Scholar 

  47. 47.

    B. Mitin and Y.A. Nagibin, Russ. J. Phys. Chem., 1970, vol. 13, pp. 741–42.

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant (Grant Number 20172010106310) and partly by the Korea Evaluation Institute of Industrial Technology (KEIT) grant (Grant Number 10063056), funded by the Ministry of Trade, Industry & Energy (MOTIE), Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 24, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heo, J.H., Park, J.H. Assessment of Physicochemical Properties of Electrical Arc Furnace Slag and Their Effects on Foamability. Metall Mater Trans B 50, 2959–2968 (2019). https://doi.org/10.1007/s11663-019-01671-4

Download citation