Thermal Behavior During the Selective Laser Melting Process of Ti-6Al-4V Powder in the Point Exposure Scan Pattern


Currently, there are two main scan patterns, including the continuous exposure scan pattern and the point exposure scan pattern, during the selective laser melting (SLM) process. The point exposure scan pattern allows a three-dimensional (3-D) printer to build finer detail features as a static molten pool that is more stable than a dynamic one. However, there has been limited theoretical research on the thermal behavior characteristics during the process in the point exposure scan pattern. Therefore, in this study, the simulation of thermal behavior during SLM of Ti-6Al-4V powder in the point exposure scan pattern was performed. The temperature evolution behavior of different positions and the effects of exposure time on the temperature evolution behavior of different positions, temperature distributions, and dimensions of the molten pool were investigated. The results showed that the direct exposure position and unexposed position had significantly different temperature evolution behaviors under a given condition, and the changed exposure time had the greatest influence on the direct exposure position compared with unexposed position. Moreover, the thermal accumulation effect of a former exposure point on a later one decreased with increasing exposure time. In addition, with the increase of exposure time, the maximum temperature of the molten pool was enhanced and the surface morphology of the molten pool changed from an approximate ellipse to an approximate circle. Besides, the molten pool dimensions were found to increase with exposure time, which indicated that the exposure time played an important role in the stability of the molten pool and the metallurgical bonding in the process. Furthermore, the dimensions of the molten pool and metallurgical bonding in the cross-sectional view were obtained through experiments. Good agreement was obtained when comparing the simulated results with the experimental ones.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    A.K. Patnaik, N. Poondla, C.C. Menzemer, and T.S. Srivatsan: Mater. Sci. Eng. A, 2014, vol. 590, pp. 390–400.

    CAS  Article  Google Scholar 

  2. 2.

    T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.

    CAS  Article  Google Scholar 

  3. 3.

    C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing: Appl. Phys. Rev., 2015, vol. 2, p. 041101.

    Article  Google Scholar 

  4. 4.

    M. Wang, W. Li, Y. Wu, S. Li, C. Cai, S. Wen, Q. Wei, Y. Shi, F. Ye, and Z. Chen: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 531–42.

    Article  Google Scholar 

  5. 5.

    K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, and F. Rezai: Mater. Sci. Eng. A, 2018, vol. 735, pp. 182–90.

    CAS  Article  Google Scholar 

  6. 6.

    N.J. Harrison, I. Todd, and K. Mumtaz: Acta Mater., 2015, vol. 94, pp. 59–68.

    CAS  Article  Google Scholar 

  7. 7.

    Z. Pang, Y. Liu, M. Li, C. Zhu, S. Li, Y. Wang, D. Wang, and C. Song: Appl. Phys. A, 2019, vol. 125, p. 90.

    Article  Google Scholar 

  8. 8.

    Y. Chen, J. Zhang, X. Gu, N. Dai, P. Qin, and L.C. Zhang: J. Alloys Compd., 2018, vol. 747, pp. 648–58.

    CAS  Article  Google Scholar 

  9. 9.

    X. Wang, J.A. Muñiz-lerma, O. Sánchez-mata, and M.A. Shandiz: Mater. Sci. Eng. A, 2018, vol. 736, pp. 27–40.

    CAS  Article  Google Scholar 

  10. 10.

    D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Compos. Sci. Technol., 2011, vol. 71, pp. 1612–20.

    CAS  Article  Google Scholar 

  11. 11.

    B. Brown: Masters theses, Missouri University of Science and Technology, Laura, MI, 2014.

  12. 12.

    C. Qiu, M. Kindi, A. Aladawi, and I. Hatmi: Sci. Rep., 2018, 8, p. 7785

    Article  Google Scholar 

  13. 13.

    P. Yuan and D. Gu: J. Phys. D: Appl. Phys., 2015, vol. 48, p. 035303.

    Article  Google Scholar 

  14. 14.

    P. Wei, Z. Wei, Z. Chen, Y. He, and J. Du: Appl. Phys. A, 2017, vol. 123, p. 604.

    Article  Google Scholar 

  15. 15.

    G. Strano, L. Hao, R.M. Everson, and K.E. Evans: J. Mater. Process. Technol., 2013, vol. 213, pp. 589–97.

    CAS  Article  Google Scholar 

  16. 16.

    J.A. Cherry, H.M. Davies, S. Mehmood, N.P. Lavery, S.G.R. Brown, and J. Sienz: Int. J. Adv. Manuf. Technol., 2015, vol. 76, pp. 869–79.

    Article  Google Scholar 

  17. 17.

    C. Kuo, C. Su, and A. Chiang: Int. J. Precis. Eng. Manuf., 2017, vol. 18, pp. 1609–18.

    Article  Google Scholar 

  18. 18.

    L. Wang, S. Wang, and J. Wu: Opt. Laser Technol., 2017, vol. 96, pp. 88–96.

    CAS  Article  Google Scholar 

  19. 19.

    J. Wu, L. Wang, and X. An: Optik (Stuttg)., 2017, vol. 137, pp. 65–78.

    CAS  Article  Google Scholar 

  20. 20.

    L. Lan, L. Cody, R. Adriane, B. Doug, L. Robert, and K. Edward: Solid Freeform Fabrication 2017: Proc. 28th Ann. Int. Solid Freeform Fabrication Symp. An Additive Manuf. Conf., 2017.

  21. 21.

    X. Ding and L. Wang: J. Manuf. Process., 2017, vol. 26, pp. 280–89.

    Article  Google Scholar 

  22. 22.

    Z. Li, B.-Q. Li, P. Bai, B. Liu, and Y. Wang: Materials (Basel), 2018, vol. 11, p. 1172.

    Article  Google Scholar 

  23. 23.

    Y. Li and D. Gu: Mater. Des., 2014, vol. 63, pp. 856–67.

    CAS  Article  Google Scholar 

  24. 24.

    D. Dai and D. Gu: Int. J. Mach. Tools Manuf., 2015, vol. 88, pp. 95–107.

    Article  Google Scholar 

  25. 25.

    X. Li, L. Wang, L. Yang, J. Wang, and K. Li: J. Mater. Process. Technol., 2014, vol. 214, pp. 1844–51.

    CAS  Article  Google Scholar 

  26. 26.

    A. Foroozmehr, M. Badrossamay, E. Foroozmehr, and S. Golabi: Mater. Des., 2016, vol. 89, pp. 255–63.

    CAS  Article  Google Scholar 

  27. 27.

    I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava: J. Alloys Compd., 2014, vol. 583, pp. 404–09.

    CAS  Article  Google Scholar 

  28. 28.

    M.H. CHO, Y.C. Lim, and D.F. Farson: Weld. J., 2006, vol. 85, pp. 271–83.

    Google Scholar 

  29. 29.

    K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead, Wiltshire, 2002.

    Google Scholar 

  30. 30.

    M. Rombouts, L. Froyen, A. Gusarov, E.H. Bentefour, and C. Glorieux: J. Appl. Phys., 2005, vol. 98, p. 013533.

    Article  Google Scholar 

  31. 31.

    K. Dai and L. Shaw: Acta Mater., 2004, vol. 52, pp. 69–80.

    CAS  Article  Google Scholar 

  32. 32.

    C. Panwisawas, C. Qiu, M.J. Anderson, Y. Sovani, R.P. Turner, M.M. Attallah, J.W. Brooks, and H.C. Basoalto: Comput. Mater. Sci., 2017, vol. 126, pp. 479–90.

    CAS  Article  Google Scholar 

  33. 33.

    A. Masmoudi, R. Bolot, and C. Coddet: J. Mater. Process. Technol., 2015, vol. 225, pp. 122–32.

  34. 34.

    A.V. Gusarov and I. Smurov: Phys. Procedia, 2010, vol. 5, pp. 381–94.

    CAS  Article  Google Scholar 

  35. 35.

    Y.-C. Wu, C.-H. San, C.-H. Chang, H.-J. Lin, R. Marwan, S. Baba, and W.-S. Hwang: J. Mater. Process. Technol., 2018, vol. 254, pp. 72–78.

    Article  Google Scholar 

  36. 36.

    C.D. Boley, S.C. Mitchell, A.M. Rubenchik, and S.S.Q. Wu: Appl. Opt., 2016, vol. 55, pp. 6496–6500.

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Grant No. 51675507) and the Strategic Pioneer Program on Space Science, Chinese Academy of Sciences (Grant No. XDA15013700).

Author information



Corresponding authors

Correspondence to Dengfu Chen or Shuqian Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 4, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, P., Wang, S., Long, M. et al. Thermal Behavior During the Selective Laser Melting Process of Ti-6Al-4V Powder in the Point Exposure Scan Pattern. Metall Mater Trans B 50, 2804–2814 (2019).

Download citation